Single-cell biomechanics and electrophysiology measuring tools have transformed biological research over the last few decades,which enabling a comprehensive and nuanced understanding of cellular behavior and function....Single-cell biomechanics and electrophysiology measuring tools have transformed biological research over the last few decades,which enabling a comprehensive and nuanced understanding of cellular behavior and function.Despite their high-quality information content,these single-cell measuring techniques suffer from laborious manual processing by highly skilled workers and extremely low throughput(tens of cells per day).Recently,numerous researchers have automated the measurement of cell mechanical and electrical signals through robotic localization and control processes.While these efforts have demonstrated promising progress,critical challenges persist,including human dependency,learning complexity,in-situ measurement,and multidimensional signal acquisition.To identify key limitations and highlight emerging opportunities for innovation,in this review,we comprehensively summarize the key steps of robotic technologies in single-cell biomechanics and electrophysiology.We also discussed the prospects and challenges of robotics and automation in biological research.By bridging gaps between engineering,biology,and data science,this work aims to stimulate interdisciplinary research and accelerate the translation of robotic single-cell technologies into practical applications in the life sciences and medical fields.展开更多
Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods...Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods.The research adopts the method of combining theoretical analysis and practical application,and designs the evidence-based value-added evaluation framework,which includes the core elements of a multi-source heterogeneous data acquisition and processing system,a value-added evaluation agent based on a large model,and an evaluation implementation and application mechanism.Through empirical research verification,the evaluation system has remarkable effects in improving learning participation,promoting ability development,and supporting teaching decision-making,and provides a theoretical reference and practical path for educational evaluation reform in the new era.The research shows that the evidence-based value-added evaluation system based on data-driven can reflect students’actual progress more fairly and objectively by accurately measuring the difference in starting point and development range of students,and provide strong support for the realization of high-quality education development.展开更多
Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel perf...Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods fo...The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.展开更多
Value-added evaluation focuses on individual student growth by tracking changes in academic performance,skills,literacy,etc.,at different time points.It weakens horizontal comparisons and emphasizes vertical progress ...Value-added evaluation focuses on individual student growth by tracking changes in academic performance,skills,literacy,etc.,at different time points.It weakens horizontal comparisons and emphasizes vertical progress to more fairly reflect educational effectiveness.This evaluation method is particularly suitable for vocational education,effectively motivating students’learning enthusiasm and enhancing their self-confidence.Foreign research is represented by the Tennessee Value-Added Assessment System(TVAAS),widely used in evaluating school quality and teacher performance.Domestic research currently focuses on the theoretical construction,model establishment,optimization,and practical application of value-added evaluation,still facing significant challenges in data collection comprehensiveness and model adaptability.Aiming at current issues,this study focuses on exploring the application of artificial intelligence large models in student value-added evaluation from an evidence-based perspective,committed to constructing an innovative evidence-based value-added evaluation system.It aims to achieve precise assessment of students’learning effect“net value-added”through multi-source data collection,intelligent analysis,and personalized feedback.The system integrates outcome evaluation,process evaluation,value-added evaluation,and comprehensive evaluation to form a“four-in-one”dynamic evaluation framework,considering students’starting points,process performance,and final achievements.In the future,value-added evaluation needs to further expand the assessment of non-academic dimensions(such as professional literacy and social-emotional skills)and explore the application of non-linear models to promote the deepening and innovation of educational evaluation reform.展开更多
Maize value-added products play a crucial role in reducing post-harvest losses, enhancing food security, and generating income. While extensive research has focused on maize production in Cameroon, the exploration of ...Maize value-added products play a crucial role in reducing post-harvest losses, enhancing food security, and generating income. While extensive research has focused on maize production in Cameroon, the exploration of its value-added products and their profitability in the North-West Region remains underexplored. This study examined the profitability of maize value-added products in Mezam Division, with the objectives to: 1) identify various maize-based products, 2) assess the diversity of these products, 3) conduct a cost-benefit analysis of selected products, 4) examine the relationship between profitability and product diversity, and 5) identify key constraints impacting profitability. To achieve these objectives, structured questionnaires were administered to 500 small-scale maize entrepreneurs randomly selected from five subdivisions. Descriptive statistics were used to analyze objective 1 and 5, while the Shannon Diversity Index was employed to assess product diversity. Additionally, a cost-benefit analysis was conducted on four selected products namely pap, parched corn, peeled parboiled corn, and corn beer, and a correlation analysis was used to examine objective 4. In total, 13 maize value-added products were identified, with a diversity index of 4.4. The total cost of processing the four selected products per entrepreneur using 18 kg of maize per product was FCFA 83631.5 (US $132.75), while the total revenue was FCFA 121864.5 (US $193.43), resulting in an economic profit of FCFA 38,233 (US $60.69). Pap emerged as the most profitable product, with an economic profit of FCFA 27,875 (US $44.24), while corn beer was the least profitable, with an economic profit of FCFA 2133.46 (US $3.39). The correlation analysis revealed a strong negative relationship between product diversity and profitability (r = −0.91), indicating that entrepreneurs can maximize profitability by focusing on a few high-demand products like pap and parched corn. Key constraints to profitability included fluctuating market prices, high production costs, limited access to finance, and inadequate storage facilities. Despite these challenges, our findings indicate that maize value addition is profitable in Mezam Division. Entrepreneurs can leverage this data for informed decision-making and future investments. It is recommended that the government promote maize value addition and provide financial support for modern processing equipment to boost profitability and income generation.展开更多
Electrochemical synthesis of value-added chemicals represents a promising approach to address multidisciplinary demands.This technology establishes direct pathways for electricity-to-chemical conversion while signific...Electrochemical synthesis of value-added chemicals represents a promising approach to address multidisciplinary demands.This technology establishes direct pathways for electricity-to-chemical conversion while significantly reducing the carbon footprint of chemical manufacturing.It simultaneously optimizes chemical energy storage and grid management,offering sustainable solutions for renewable energy utilization and overcoming geographical constraints in energy distribution.As a critical nexus between renewable energy and green chemistry,electrochemical synthesis serves dual roles in energy transformation and chemical production,emerging as a vital component in developing carbon-neutral circular economies.Focusing on key small molecules(H_(2)O,CO_(2),N_(2),O_(2)),this comment examines fundamental scientific challenges and practical barriers in electrocatalytic conversion processes,bridging laboratory innovations with industrial-scale implementation.展开更多
The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties a...The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties at temperatures above room temperature have been extensively discussed, there is a lack of standard measurement protocols and error analyses for low-temperature transport properties. In this study, we present a measurement system capable of characterizing all three key thermoelectric parameters, i.e., Seebeck coefficient, electrical conductivity, and thermal conductivity, for a single sample across a temperature range of 10 K to 300 K. We investigated six representative commercial Bi_(2)Te_(3)-based samples(three N-type and three P-type). Using an error propagation model, we systematically analyzed the measurement uncertainties of the three intrinsic parameters and the resulting thermoelectric figure of merit. Our findings reveal that measurement uncertainties for both N-type and P-type Bi_(2)Te_(3)-based materials can be effectively maintained below 5% in the temperature range of 40 K to 300 K. However, the uncertainties increase to over 10% at lower temperatures, primarily due to the relatively smaller values of electrical resistivity and Seebeck coefficients in this regime. This work establishes foundational data for Bi_(2)Te_(3)-based thermoelectric materials and provides a framework for broader investigations of advanced low-temperature thermoelectrics.展开更多
The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts....The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.展开更多
In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array...In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array components often encounters challenges due to the reduced scale and complex structures,either by contact or noncontact optical approaches.Among these microstructural arrays,there are still no optical measurement methods for micro corner-cube reflector arrays.To solve this problem,this study introduces a method for effectively eliminating coherent noise and achieving surface profile reconstruction in interference measurements of microstructural arrays.The proposed denoising method allows the calibration and inverse solving of system errors in the frequency domain by employing standard components with known surface types.This enables the effective compensation of the complex amplitude of non-sample coherent light within the interferometer optical path.The proposed surface reconstruction method enables the profile calculation within the situation that there is complex multi-reflection during the propagation of rays in microstructural arrays.Based on the measurement results,two novel metrics are defined to estimate diffraction errors at array junctions and comprehensive errors across multiple array elements,offering insights into other types of microstructure devices.This research not only addresses challenges of the coherent noise and multi-reflection,but also makes a breakthrough for quantitively optical interference measurement of microstructural array devices.展开更多
Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hinde...Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hindered this progress.In this work,we present a systematic protocol for electrochemical measurements to thoroughly evaluate the activity and stability of OER electrocatalysts.We begin with a detailed introduction to constructing the electrochemical system,encompassing experimental setup and the selection criteria for electrodes and electrolytes.Potential contaminants originating from electrolytes,cells,and electrodes are identified and their impacts are discussed.We also examine the effects of external factors,such as temperature,magnetic fields,and natural light,on OER measurements.The protocol outlines operational mechanisms and recommended settings for various electrochemical techniques,including cyclic voltammetry(CV),potentiostatic electrochemical impedance spectroscopy(PEIS),Tafel slope analysis,and pulse voltammetry(PV).We summarize existing evaluation methodologies for assessing intrinsic activities and long-term stabilities of catalysts.Based on these discussions,we propose a comprehensive protocol for evaluating OER electrocatalysts’performance.Finally,we offer perspectives on advancing OER catalysts from laboratory research to industrial applications.展开更多
Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness...Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness are easily affected by limited computing power of airborne equipment,complex aerial scenes and partial occlusion.To address the above challenges,we propose a novel drogue keypoint detection and pose measurement algorithm based on monocular vision,and realize real-time processing on airborne embedded devices.Firstly,a lightweight network is designed with structural re-parameterization to reduce computational cost and improve inference speed.And a sub-pixel level keypoints prediction head and loss functions are adopted to improve keypoint detection accuracy.Secondly,a closed-form solution of drogue pose is computed based on double spatial circles,followed by a nonlinear refinement based on Levenberg-Marquardt optimization.Both virtual simulation and physical simulation experiments have been used to test the proposed method.In the virtual simulation,the mean pixel error of the proposed method is 0.787 pixels,which is significantly superior to that of other methods.In the physical simulation,the mean relative measurement error is 0.788%,and the mean processing time is 13.65 ms on embedded devices.展开更多
This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer mult...This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.展开更多
In the context of urban-rural integration development in China,the distribution of value-added income of rural land collective ownership is related to the protection of farmers rights and interests and the specific im...In the context of urban-rural integration development in China,the distribution of value-added income of rural land collective ownership is related to the protection of farmers rights and interests and the specific implementation of rural revitalization strategy.Based on the entry of rural collectively-owned construction land into the market and the compensation system for land expropriation,this paper discusses in detail the distribution of value-added income of rural land collective ownership,analyzes the current situation,existing problems and causes of the current distribution mechanism,and puts forward countermeasures and suggestions for optimizing the distribution mechanism.Through literature research and case analysis,this paper reveals the unfair phenomenon in the distribution of value-added income of rural land,and discusses the roles and responsibilities of government,collective organizations and individual farmers in the distribution of income.The results show that establishing a fair and reasonable income distribution mechanism,strengthening the construction of laws and regulations,improving farmers participation and protecting their rights and interests are the key to optimizing the distribution of rural land value-added income.In addition,it is expected that this paper will provide some theoretical basis and practical guidance for improving the distribution mechanism of value-added income of rural land collective ownership.展开更多
International trade research has long sought to investigate how manufacturers can upgrade within global value chains and escape the“low-end trap”.This paper examines how collaborative innovation can facilitate this ...International trade research has long sought to investigate how manufacturers can upgrade within global value chains and escape the“low-end trap”.This paper examines how collaborative innovation can facilitate this ascent,using an undirected weighted network of joint patent applications and firm-level data.By analyzing the network’s structural characteristics and its evolution,we explore the mechanisms through which collaboration drives the rise of manufacturing enterprises within global value chains.Our findings show that:(1)China’s rapidly expanding collaborative innovation network features a distinct“core-periphery”structure,with leading firms,universities,and government research institutions at its center.(2)By strengthening market power and enabling firms to take on more advanced production,collaborative innovation contributes to a higher domestic value-added rate in exports.(3)Heterogeneity analysis reveals that the impact of collaborative innovation on moving up the value chain is particularly evident for firms with strong production and technology absorption capabilities,those positioned lower in the value chain,and those facing fewer trade barriers.展开更多
The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale ...The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum(NISQ)devices due to their excessive depth and circuit complexity.We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement.The iterative framework of the algorithm,combined with the independence from controlled unitary operations,inherently mitigates circuit depth and complexity limitations.Through an experimental realization on the photonic system,we demonstrate high-precision estimation of diverse phase differences,showing root-mean-square errors(RMSE)below the standard quantum limit𝒪(1/√N)and reaching the Heisenberg scaling𝒪(1/N)after a certain number of iterations.Our scheme provides a critical advantage in quantum resource-constrained scenarios,and advances practical implementations of quantum information tasks under realistic hardware constraints.展开更多
The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear program...The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear programming(ILP)based modeling and solution schemes that ignore the graph-related features of WAMS,in this work,the PDCP problem is solved through a heuristic graphbased two-phase procedure(TPP):topology partitioning,and phasor data concentrator(PDC)provisioning.Based on the existing minimum k-section algorithms in graph theory,the k-base topology partitioning algorithm is proposed.To improve the performance,the“center-node-last”pre-partitioning algorithm is proposed to give an initial partition before the k-base partitioning algorithm is applied.Then,the PDC provisioning algorithm is proposed to locate PDCs into the decomposed sub-graphs.The proposed TPP was evaluated on five different IEEE benchmark test power systems and the achieved overall communication performance compared to the ILP based schemes show the validity and efficiency of the proposed method.展开更多
Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and ...Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and manipulation of 2D materials but also in the manufacture,integration and performance of the functional devices.However,the atomic thickness and limited lateral dimensions of 2D materials make the accurate measurement and modulation of their interfacial adhesion energy challenging.In this review,the recent advances in the measurement and modulation of the interfacial adhesion properties of 2D materials are systematically combed.Experimental methods and relative theoretical models for the adhesion measurement of 2D materials are summarized,with their scope of application and limitations discussed.The measured adhesion energies between 2D materials and various substrates are described in categories,where the typical adhesion modulation strategies of 2D materials are also introduced.Finally,the remaining challenges and opportunities for the interfacial adhesion measurement and modulation of 2D materials are presented.This paper provides guidance for addressing the adhesion issues in devices and systems involving 2D materials.展开更多
The advancement of Global Navigation Satellite System(GNSS)technology has enhanced navigation and positioning accuracy,reliability,and availabil-ity.In Kenya,private organizations have installed CORS to support positi...The advancement of Global Navigation Satellite System(GNSS)technology has enhanced navigation and positioning accuracy,reliability,and availabil-ity.In Kenya,private organizations have installed CORS to support position ing and navigation services,allowing users to access GNSS RTK corrections for survey and mapping projects.However,the accuracy and consistency of GNSS RTK measurements from private CORS remain unverified,which this study aimed to address.A study in Nairobi,Kenya,examined the accuracy and consistency of private CORS by comparing GNSS RTK measurements over stable Survey of Kenya(SoK)control points using published coordinates as a reference.Large vertical coordinate value discrepancies(8.5 m-11 m)and relatively smaller horizontal coordinate value discrepancies(0.3 m-2.4 m)were observed.The discrepancies arise because the private CORS operate on an independent datum,not integrated with the Survey of Kenya(SoK)geo detic control network.The proximity of control points to CORS(less than 30 km)had minimal impact on measurement accuracy.To ensure accuracy and consistency,it is recommended that private CORS be integrated into the national grid,enhancing the reliability of GNSS RTK measurements for di verse survey and mapping applications.Alternatively,users relying on private CORS must localize or perform a site calibration of their rover receivers using at least three known control points to align their measurements with the Na-tional Grid.展开更多
基金the National Natural Science Foundation of China[62525301,62127811,62433019]the New Cornerstone Science Foundation through the XPLORER PRIZEthe financial support by the China Postdoctoral Science Foundation[GZB20240797].
文摘Single-cell biomechanics and electrophysiology measuring tools have transformed biological research over the last few decades,which enabling a comprehensive and nuanced understanding of cellular behavior and function.Despite their high-quality information content,these single-cell measuring techniques suffer from laborious manual processing by highly skilled workers and extremely low throughput(tens of cells per day).Recently,numerous researchers have automated the measurement of cell mechanical and electrical signals through robotic localization and control processes.While these efforts have demonstrated promising progress,critical challenges persist,including human dependency,learning complexity,in-situ measurement,and multidimensional signal acquisition.To identify key limitations and highlight emerging opportunities for innovation,in this review,we comprehensively summarize the key steps of robotic technologies in single-cell biomechanics and electrophysiology.We also discussed the prospects and challenges of robotics and automation in biological research.By bridging gaps between engineering,biology,and data science,this work aims to stimulate interdisciplinary research and accelerate the translation of robotic single-cell technologies into practical applications in the life sciences and medical fields.
基金This paper is the research result of“Research on Innovation of Evidence-Based Teaching Paradigm in Vocational Education under the Background of New Quality Productivity”(2024JXQ176)the Shandong Province Artificial Intelligence Education Research Project(SDDJ202501035),which explores the application of artificial intelligence big models in student value-added evaluation from an evidence-based perspective。
文摘Based on the educational evaluation reform,this study explores the construction of an evidence-based value-added evaluation system based on data-driven,aiming to solve the limitations of traditional evaluation methods.The research adopts the method of combining theoretical analysis and practical application,and designs the evidence-based value-added evaluation framework,which includes the core elements of a multi-source heterogeneous data acquisition and processing system,a value-added evaluation agent based on a large model,and an evaluation implementation and application mechanism.Through empirical research verification,the evaluation system has remarkable effects in improving learning participation,promoting ability development,and supporting teaching decision-making,and provides a theoretical reference and practical path for educational evaluation reform in the new era.The research shows that the evidence-based value-added evaluation system based on data-driven can reflect students’actual progress more fairly and objectively by accurately measuring the difference in starting point and development range of students,and provide strong support for the realization of high-quality education development.
文摘Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金supported by National Natural Science Foundation of China(No.52176122).
文摘The centroid coordinate serves as a critical control parameter in motion systems,including aircraft,missiles,rockets,and drones,directly influencing their motion dynamics and control performance.Traditional methods for centroid measurement often necessitate custom equipment and specialized positioning devices,leading to high costs and limited accuracy.Here,we present a centroid measurement method that integrates 3D scanning technology,enabling accurate measurement of centroid across various types of objects without the need for specialized positioning fixtures.A theoretical framework for centroid measurement was established,which combined the principle of the multi-point weighing method with 3D scanning technology.The measurement accuracy was evaluated using a designed standard component.Experimental results demonstrate that the discrepancies between the theoretical and the measured centroid of a standard component with various materials and complex shapes in the X,Y,and Z directions are 0.003 mm,0.009 mm,and 0.105 mm,respectively,yielding a spatial deviation of 0.106 mm.Qualitative verification was conducted through experimental validation of three distinct types.They confirmed the reliability of the proposed method,which allowed for accurate centroid measurements of various products without requiring positioning fixtures.This advancement significantly broadened the applicability and scope of centroid measurement devices,offering new theoretical insights and methodologies for the measurement of complex parts and systems.
基金Artificial Intelligence Education Research Project of Shandong Provincial Audio-Visual Education Center“Exploration of the Application of Large-scale AI Models in Student Value-added Evaluation from an Evidence-based Perspective”(SDDJ202501035)。
文摘Value-added evaluation focuses on individual student growth by tracking changes in academic performance,skills,literacy,etc.,at different time points.It weakens horizontal comparisons and emphasizes vertical progress to more fairly reflect educational effectiveness.This evaluation method is particularly suitable for vocational education,effectively motivating students’learning enthusiasm and enhancing their self-confidence.Foreign research is represented by the Tennessee Value-Added Assessment System(TVAAS),widely used in evaluating school quality and teacher performance.Domestic research currently focuses on the theoretical construction,model establishment,optimization,and practical application of value-added evaluation,still facing significant challenges in data collection comprehensiveness and model adaptability.Aiming at current issues,this study focuses on exploring the application of artificial intelligence large models in student value-added evaluation from an evidence-based perspective,committed to constructing an innovative evidence-based value-added evaluation system.It aims to achieve precise assessment of students’learning effect“net value-added”through multi-source data collection,intelligent analysis,and personalized feedback.The system integrates outcome evaluation,process evaluation,value-added evaluation,and comprehensive evaluation to form a“four-in-one”dynamic evaluation framework,considering students’starting points,process performance,and final achievements.In the future,value-added evaluation needs to further expand the assessment of non-academic dimensions(such as professional literacy and social-emotional skills)and explore the application of non-linear models to promote the deepening and innovation of educational evaluation reform.
文摘Maize value-added products play a crucial role in reducing post-harvest losses, enhancing food security, and generating income. While extensive research has focused on maize production in Cameroon, the exploration of its value-added products and their profitability in the North-West Region remains underexplored. This study examined the profitability of maize value-added products in Mezam Division, with the objectives to: 1) identify various maize-based products, 2) assess the diversity of these products, 3) conduct a cost-benefit analysis of selected products, 4) examine the relationship between profitability and product diversity, and 5) identify key constraints impacting profitability. To achieve these objectives, structured questionnaires were administered to 500 small-scale maize entrepreneurs randomly selected from five subdivisions. Descriptive statistics were used to analyze objective 1 and 5, while the Shannon Diversity Index was employed to assess product diversity. Additionally, a cost-benefit analysis was conducted on four selected products namely pap, parched corn, peeled parboiled corn, and corn beer, and a correlation analysis was used to examine objective 4. In total, 13 maize value-added products were identified, with a diversity index of 4.4. The total cost of processing the four selected products per entrepreneur using 18 kg of maize per product was FCFA 83631.5 (US $132.75), while the total revenue was FCFA 121864.5 (US $193.43), resulting in an economic profit of FCFA 38,233 (US $60.69). Pap emerged as the most profitable product, with an economic profit of FCFA 27,875 (US $44.24), while corn beer was the least profitable, with an economic profit of FCFA 2133.46 (US $3.39). The correlation analysis revealed a strong negative relationship between product diversity and profitability (r = −0.91), indicating that entrepreneurs can maximize profitability by focusing on a few high-demand products like pap and parched corn. Key constraints to profitability included fluctuating market prices, high production costs, limited access to finance, and inadequate storage facilities. Despite these challenges, our findings indicate that maize value addition is profitable in Mezam Division. Entrepreneurs can leverage this data for informed decision-making and future investments. It is recommended that the government promote maize value addition and provide financial support for modern processing equipment to boost profitability and income generation.
文摘Electrochemical synthesis of value-added chemicals represents a promising approach to address multidisciplinary demands.This technology establishes direct pathways for electricity-to-chemical conversion while significantly reducing the carbon footprint of chemical manufacturing.It simultaneously optimizes chemical energy storage and grid management,offering sustainable solutions for renewable energy utilization and overcoming geographical constraints in energy distribution.As a critical nexus between renewable energy and green chemistry,electrochemical synthesis serves dual roles in energy transformation and chemical production,emerging as a vital component in developing carbon-neutral circular economies.Focusing on key small molecules(H_(2)O,CO_(2),N_(2),O_(2)),this comment examines fundamental scientific challenges and practical barriers in electrocatalytic conversion processes,bridging laboratory innovations with industrial-scale implementation.
基金supported by the National Natural Science Foundation of China (Grant No. 52172259)the National Key Research and Development Program of China (Grant Nos. 2021YFA0718700 and 2022YFB3803900)the Fundamental Research Funds for the Inner Mongolia Normal University (Grant No. 2022JBTD008)。
文摘The accurate characterization of thermoelectric properties at low temperatures is crucial for the development of high-performance thermoelectric cooling devices. While measurement errors of thermoelectric properties at temperatures above room temperature have been extensively discussed, there is a lack of standard measurement protocols and error analyses for low-temperature transport properties. In this study, we present a measurement system capable of characterizing all three key thermoelectric parameters, i.e., Seebeck coefficient, electrical conductivity, and thermal conductivity, for a single sample across a temperature range of 10 K to 300 K. We investigated six representative commercial Bi_(2)Te_(3)-based samples(three N-type and three P-type). Using an error propagation model, we systematically analyzed the measurement uncertainties of the three intrinsic parameters and the resulting thermoelectric figure of merit. Our findings reveal that measurement uncertainties for both N-type and P-type Bi_(2)Te_(3)-based materials can be effectively maintained below 5% in the temperature range of 40 K to 300 K. However, the uncertainties increase to over 10% at lower temperatures, primarily due to the relatively smaller values of electrical resistivity and Seebeck coefficients in this regime. This work establishes foundational data for Bi_(2)Te_(3)-based thermoelectric materials and provides a framework for broader investigations of advanced low-temperature thermoelectrics.
文摘The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375414,52075100)Shanghai Science and Technology Committee Innovation Grant of China(Grant No.23ZR1404200).
文摘In modern industrial design trends featuring with integration,miniaturization,and versatility,there is a growing demand on the utilization of microstructural array devices.The measurement of such microstructural array components often encounters challenges due to the reduced scale and complex structures,either by contact or noncontact optical approaches.Among these microstructural arrays,there are still no optical measurement methods for micro corner-cube reflector arrays.To solve this problem,this study introduces a method for effectively eliminating coherent noise and achieving surface profile reconstruction in interference measurements of microstructural arrays.The proposed denoising method allows the calibration and inverse solving of system errors in the frequency domain by employing standard components with known surface types.This enables the effective compensation of the complex amplitude of non-sample coherent light within the interferometer optical path.The proposed surface reconstruction method enables the profile calculation within the situation that there is complex multi-reflection during the propagation of rays in microstructural arrays.Based on the measurement results,two novel metrics are defined to estimate diffraction errors at array junctions and comprehensive errors across multiple array elements,offering insights into other types of microstructure devices.This research not only addresses challenges of the coherent noise and multi-reflection,but also makes a breakthrough for quantitively optical interference measurement of microstructural array devices.
基金supported by the Fundamental Research Funds for the Central Universities(20822041H4082)。
文摘Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hindered this progress.In this work,we present a systematic protocol for electrochemical measurements to thoroughly evaluate the activity and stability of OER electrocatalysts.We begin with a detailed introduction to constructing the electrochemical system,encompassing experimental setup and the selection criteria for electrodes and electrolytes.Potential contaminants originating from electrolytes,cells,and electrodes are identified and their impacts are discussed.We also examine the effects of external factors,such as temperature,magnetic fields,and natural light,on OER measurements.The protocol outlines operational mechanisms and recommended settings for various electrochemical techniques,including cyclic voltammetry(CV),potentiostatic electrochemical impedance spectroscopy(PEIS),Tafel slope analysis,and pulse voltammetry(PV).We summarize existing evaluation methodologies for assessing intrinsic activities and long-term stabilities of catalysts.Based on these discussions,we propose a comprehensive protocol for evaluating OER electrocatalysts’performance.Finally,we offer perspectives on advancing OER catalysts from laboratory research to industrial applications.
基金supported by the National Science Fund for Distinguished Young Scholars,China(No.51625501)Aeronautical Science Foundation of China(No.20240046051002)National Natural Science Foundation of China(No.52005028).
文摘Real-time and accurate drogue pose measurement during docking is basic and critical for Autonomous Aerial Refueling(AAR).Vision measurement is the best practicable technique,but its measurement accuracy and robustness are easily affected by limited computing power of airborne equipment,complex aerial scenes and partial occlusion.To address the above challenges,we propose a novel drogue keypoint detection and pose measurement algorithm based on monocular vision,and realize real-time processing on airborne embedded devices.Firstly,a lightweight network is designed with structural re-parameterization to reduce computational cost and improve inference speed.And a sub-pixel level keypoints prediction head and loss functions are adopted to improve keypoint detection accuracy.Secondly,a closed-form solution of drogue pose is computed based on double spatial circles,followed by a nonlinear refinement based on Levenberg-Marquardt optimization.Both virtual simulation and physical simulation experiments have been used to test the proposed method.In the virtual simulation,the mean pixel error of the proposed method is 0.787 pixels,which is significantly superior to that of other methods.In the physical simulation,the mean relative measurement error is 0.788%,and the mean processing time is 13.65 ms on embedded devices.
基金supported by the National Natural Science Foundation of China (Nos. 62276204, 62203343)。
文摘This study investigates a consistent fusion algorithm for distributed multi-rate multi-sensor systems operating in feedback-memory configurations, where each sensor's sampling period is uniform and an integer multiple of the state update period. The focus is on scenarios where the correlations among Measurement Noises(MNs) from different sensors are unknown. Firstly, a non-augmented local estimator that applies to sampling cases is designed to provide unbiased Local Estimates(LEs) at the fusion points. Subsequently, a measurement-equivalent approach is then developed to parameterize the correlation structure between LEs and reformulate LEs into a unified form, thereby constraining the correlations arising from MNs to an admissible range. Simultaneously, a family of upper bounds on the joint error covariance matrix of LEs is derived based on the constrained correlations, avoiding the need to calculate the exact error cross-covariance matrix of LEs. Finally, a sequential fusion estimator is proposed in the sense of Weighted Minimum Mean Square Error(WMMSE), and it is proven to be unbiased, consistent, and more accurate than the well-known covariance intersection method. Simulation results illustrate the effectiveness of the proposed algorithm by highlighting improvements in consistency and accuracy.
文摘In the context of urban-rural integration development in China,the distribution of value-added income of rural land collective ownership is related to the protection of farmers rights and interests and the specific implementation of rural revitalization strategy.Based on the entry of rural collectively-owned construction land into the market and the compensation system for land expropriation,this paper discusses in detail the distribution of value-added income of rural land collective ownership,analyzes the current situation,existing problems and causes of the current distribution mechanism,and puts forward countermeasures and suggestions for optimizing the distribution mechanism.Through literature research and case analysis,this paper reveals the unfair phenomenon in the distribution of value-added income of rural land,and discusses the roles and responsibilities of government,collective organizations and individual farmers in the distribution of income.The results show that establishing a fair and reasonable income distribution mechanism,strengthening the construction of laws and regulations,improving farmers participation and protecting their rights and interests are the key to optimizing the distribution of rural land value-added income.In addition,it is expected that this paper will provide some theoretical basis and practical guidance for improving the distribution mechanism of value-added income of rural land collective ownership.
基金supported by the National Social Science Fund of China(NSSFC)“Research on Collaborative Innovation and Global Value Chain Upgrading in Manufacturing”(Grant No.23CJL019)“Research on the Advantages of Ultra-Large-Scale Market and the Construction of Modern Industrial System”(Grant No.23&ZD041).
文摘International trade research has long sought to investigate how manufacturers can upgrade within global value chains and escape the“low-end trap”.This paper examines how collaborative innovation can facilitate this ascent,using an undirected weighted network of joint patent applications and firm-level data.By analyzing the network’s structural characteristics and its evolution,we explore the mechanisms through which collaboration drives the rise of manufacturing enterprises within global value chains.Our findings show that:(1)China’s rapidly expanding collaborative innovation network features a distinct“core-periphery”structure,with leading firms,universities,and government research institutions at its center.(2)By strengthening market power and enabling firms to take on more advanced production,collaborative innovation contributes to a higher domestic value-added rate in exports.(3)Heterogeneity analysis reveals that the impact of collaborative innovation on moving up the value chain is particularly evident for firms with strong production and technology absorption capabilities,those positioned lower in the value chain,and those facing fewer trade barriers.
基金Project supported by the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20233001 and BK20243060)the National Natural Science Foundation of China(Grant No.62288101)。
文摘The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum(NISQ)devices due to their excessive depth and circuit complexity.We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement.The iterative framework of the algorithm,combined with the independence from controlled unitary operations,inherently mitigates circuit depth and complexity limitations.Through an experimental realization on the photonic system,we demonstrate high-precision estimation of diverse phase differences,showing root-mean-square errors(RMSE)below the standard quantum limit𝒪(1/√N)and reaching the Heisenberg scaling𝒪(1/N)after a certain number of iterations.Our scheme provides a critical advantage in quantum resource-constrained scenarios,and advances practical implementations of quantum information tasks under realistic hardware constraints.
基金supported by the National Key Research and Development Program of China(2023YFB 2906403).
文摘The phasor data concentrator placement(PDCP)in wide area measurement systems(WAMS)is an optimization problem in the communication network planning for power grid.Instead of using the traditional integer linear programming(ILP)based modeling and solution schemes that ignore the graph-related features of WAMS,in this work,the PDCP problem is solved through a heuristic graphbased two-phase procedure(TPP):topology partitioning,and phasor data concentrator(PDC)provisioning.Based on the existing minimum k-section algorithms in graph theory,the k-base topology partitioning algorithm is proposed.To improve the performance,the“center-node-last”pre-partitioning algorithm is proposed to give an initial partition before the k-base partitioning algorithm is applied.Then,the PDC provisioning algorithm is proposed to locate PDCs into the decomposed sub-graphs.The proposed TPP was evaluated on five different IEEE benchmark test power systems and the achieved overall communication performance compared to the ILP based schemes show the validity and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12002133,12372109,and 11972171)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20200590 and BK20180031)+4 种基金the Fundamental Research Funds for the Central Universities(Grant No.JUSRP121040)the National Key R&D Program of China(Grant No.2023YFB4605101)the 111 project(Grant No.B18027)the Open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education(Grant No.NJ2020003)the Sixth Phase of Jiangsu Province“333 High Level Talent Training Project”Second Level Talents.
文摘Two-dimensional(2D)materials are promising for next-generation electronic devices and systems due to their unique physical properties.The interfacial adhesion plays a vital role not only in the synthesis,transfer and manipulation of 2D materials but also in the manufacture,integration and performance of the functional devices.However,the atomic thickness and limited lateral dimensions of 2D materials make the accurate measurement and modulation of their interfacial adhesion energy challenging.In this review,the recent advances in the measurement and modulation of the interfacial adhesion properties of 2D materials are systematically combed.Experimental methods and relative theoretical models for the adhesion measurement of 2D materials are summarized,with their scope of application and limitations discussed.The measured adhesion energies between 2D materials and various substrates are described in categories,where the typical adhesion modulation strategies of 2D materials are also introduced.Finally,the remaining challenges and opportunities for the interfacial adhesion measurement and modulation of 2D materials are presented.This paper provides guidance for addressing the adhesion issues in devices and systems involving 2D materials.
基金the support received from private CORS operators in Nairobi,Kenya,during the research period.
文摘The advancement of Global Navigation Satellite System(GNSS)technology has enhanced navigation and positioning accuracy,reliability,and availabil-ity.In Kenya,private organizations have installed CORS to support position ing and navigation services,allowing users to access GNSS RTK corrections for survey and mapping projects.However,the accuracy and consistency of GNSS RTK measurements from private CORS remain unverified,which this study aimed to address.A study in Nairobi,Kenya,examined the accuracy and consistency of private CORS by comparing GNSS RTK measurements over stable Survey of Kenya(SoK)control points using published coordinates as a reference.Large vertical coordinate value discrepancies(8.5 m-11 m)and relatively smaller horizontal coordinate value discrepancies(0.3 m-2.4 m)were observed.The discrepancies arise because the private CORS operate on an independent datum,not integrated with the Survey of Kenya(SoK)geo detic control network.The proximity of control points to CORS(less than 30 km)had minimal impact on measurement accuracy.To ensure accuracy and consistency,it is recommended that private CORS be integrated into the national grid,enhancing the reliability of GNSS RTK measurements for di verse survey and mapping applications.Alternatively,users relying on private CORS must localize or perform a site calibration of their rover receivers using at least three known control points to align their measurements with the Na-tional Grid.