The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,c...The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,causing carbon storage exchanges.However,the relationship between carbon storage and land use change in the MRYR is not concerned,which results in the uncertainty in the simulation of carbon storage in this area.Land use changes directly affect the carbon storage capacity of ecosystems,and as an indicator reflecting the overall state of land use,land use degree has an important relationship with carbon storage.In this study,land use data and the integrated valuation of ecosystem services and trade-offs(InVEST)model were used to assess the trends in land use degree and carbon storage in the MRYR during 1980-2020.The potential impact index and the standard deviation ellipse(SDE)algorithm were applied to quantify and analyze the characteristics of the impact of land use changes on carbon storage.Subsequently,land use transitions that led to carbon storage variations and their spatial variations were determined.The results showed that:(1)the most significant periods of carbon storage changes and land use transitions were observed during 1990-1995 and 1995-2020,with the most changed areas locating in the east of Fenhe River and in northwestern Henan Province;(2)the positive impact of land use degree on carbon storage may be related to the environmental protection measures implemented along the Yellow River,while the negative impact may be associated with the expansion of construction land in plain areas;and(3)the conversion of other land use types to grassland was the primary factor affecting carbon storage changes during 1980-2020.In future land use planning,attention should be given to the direction of grassland conversion,and focus on reasonably limiting the development of construction land.To enhance carbon storage,it will be crucial to increase the area of high-carbon-density land types,such as forest land and grassland under the condition that the area of permanent farmland does not decrease.展开更多
Scientific reforms proposed in response to moral concerns about corrupted science are reminiscent of the Christian Reformation,which similarly formed a moral reorientation as a reaction to malpractices.In this study,w...Scientific reforms proposed in response to moral concerns about corrupted science are reminiscent of the Christian Reformation,which similarly formed a moral reorientation as a reaction to malpractices.In this study,we compare these moral reorientation processes to contextualize two different moral programmes of the scientific reform movement and their sociopolitical conditions.We argue that such an explication of moral programmes is vital to build legitimacy and reflect on value-prioritization.While epistemic programmes are foregrounded,moral programmes also play a crucial role in shaping science,and different moral programmes offer different promises for the sustained support of credible,reliable,fair and equitable science.We discuss the virtue and equity programmes,and through interrogating both programmes in relation to the Reformation,we display the relevance of sociopolitical contexts to how key values operate in science and generate orders of worth.These insights aim to stimulate debate about the conditions for opting for either of these moral programmes.In our view,not all moral programmes offer equal promise for the sustained support of credible,equitable and fair science.展开更多
This study focuses on the risks associated with the on-balance sheet recognition of data resources.At the legal level,disputes over ownership often arise due to unclear data property rights,while privacy protection,cy...This study focuses on the risks associated with the on-balance sheet recognition of data resources.At the legal level,disputes over ownership often arise due to unclear data property rights,while privacy protection,cybersecurity,and cross-border data flows create additional compliance challenges.In terms of recognition,the subjectivity of traditional valuation methods,the lack of active markets,and the rapid depreciation of data value caused by technological iteration hinder reliable measurement.With respect to disclosure,organizations face a dilemma between transparency and confidentiality.Collectively,these issues exacerbate audit risks.It is therefore imperative to establish an appropriate legal,accounting,and auditing framework to mitigate such risks and remove barriers to the proper recognition of data assets on balance sheets.展开更多
Urbanization and environmental degradation have led to significant declines in water quality and aquatic ecosystem health,highlighting the urgent need for effective restoration efforts.This study applies an integrated...Urbanization and environmental degradation have led to significant declines in water quality and aquatic ecosystem health,highlighting the urgent need for effective restoration efforts.This study applies an integrated analysis approach to estimate the economic value and benefits of improvements in water quality and aquatic ecosystem services resulting from the Ecological Stream Restoration Project.Using survey data analyzed through the choice experiment(CE)method,we assessed respondents’preferences for various ecosystem services,including water-friendly services,ecological functions,water-level control,and water-quality purification.Three empirical analysis models—the Conditional Logit Model(CLM),Nested Logit Model(NL),and Error Component Logit Model(ECL)—were applied,with the ECL model identified as the most suitable for this study.From the physical impact assessment,we derived compensating variations to estimate the annual economic benefits of the project.The estimated annual economic value of water quality improvement due to the Anyangcheon Ecological Stream Restoration Project ranged from approximately KRW 10.54 billion to KRW 21.44 billion,while the economic value of aquatic ecosystem improvement was estimated to range from KRW 6.05 billion to KRW 12.30 billion annually.This study provides analytic framework that can inform future ecological restoration projects and sustainable water management policies.展开更多
The results of mass appraisal in many countries are used as a basis for calculating the amount of real estate tax,therefore,regardless of the methods used to calculate it,the resulting value should be as close as poss...The results of mass appraisal in many countries are used as a basis for calculating the amount of real estate tax,therefore,regardless of the methods used to calculate it,the resulting value should be as close as possible to the market value of the real estate to maintain a balance of interests between the state and the rights holders.In practice,this condition is not always met,since,firstly,the quality of market data is often very low,and secondly,some markets are characterized by low activity,which is expressed in a deficit of information on asking prices.The aim of the work is ecological valuation of land use:how regression-based mass appraisal can inform ecological conservation,land degradation,and sustainable land management.Four multiple regression models were constructed for AI generated map of land plots for recreational use in St.Petersburg(Russia)with different volumes of market information(32,30,20 and 15 units of market information with four price-forming factors).During the analysis of the quality of the models,it was revealed that the best result is shown by the model built on the maximum sample size,then the model based on 15 analogs,which proves that a larger number of analog objects does not always allow us to achieve better results,since the more analog objects there are.展开更多
This study examines the empirical feasibility of quantitatively integrating environmental value information into Strategic Environmental Assessment(SEA).An analytical framework was established to incorporate environme...This study examines the empirical feasibility of quantitatively integrating environmental value information into Strategic Environmental Assessment(SEA).An analytical framework was established to incorporate environmental cost estimates into the SEA process by utilizing ecosystem service unit values provided by the Environmental Valuation Information System(EVIS),a national platform developed to support the evaluation of policies and projects.The framework was applied to a case study involving a multipurpose rural water development project in South Korea.Ecosystem service losses resulting from the project were quantified using biophysical indicators,such as vegetation biomass,forest area,and hydrological functions,and subsequently monetized through the application of the market price method,replacement cost method,and contingent valuation method.The total annual environmental cost was estimated to be approximately KRW 56.18 billion,with the majority attributable to losses in forest conservation and climate regulation services.These findings demonstrate that quantified environmental data can serve as a robust basis for alternative comparison and site evaluation within SEA.The study provides empirical evidence supporting the advancement of SEA from a predominantly procedural tool focused on environmental protection to a more comprehensive sustainability assessment framework that integrates environmental,economic,and social considerations.Furthermore,the results suggest that EVIS-based quantitative information holds potential for broader application in other national evaluation systems,such as preliminary feasibility studies and regulatory impact assessments.展开更多
The Liaohe River Basin(LRB)in Northeast China,a critical agricultural and industrial zone,has faced escalating water resource pressures in recent decades due to rapid urbanization,intensified land use changes,and clim...The Liaohe River Basin(LRB)in Northeast China,a critical agricultural and industrial zone,has faced escalating water resource pressures in recent decades due to rapid urbanization,intensified land use changes,and climate variability.Understanding the spatiotemporal dynamics of water yield and its driving factors is essential for sustainable water resource management in this ecologically sensitive region.This study employed the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to quantify the spatiotemporal patterns of water yield in the LRB(dividing into six sub-basins from east to west:East Liaohe River Basin(ELRB),Taizi River Basin(TRB),Middle Liaohe River Basin(MLRB),West Liaohe River Basin(WLRB),Xinkai River Basin(XRB),and Wulijimuren River Basin(WRB))from 1993 to 2022,with a focus on the impacts of climate change and land use cover change(LUCC).Results revealed that the LRB had an average annual precipitation of 483.15 mm,with an average annual water yield of 247.54 mm,both showing significant upward trend over the 30-a period.Spatially,water yield demonstrated significant heterogeneity,with higher values in southeastern sub-basins and lower values in northwestern sub-basins.The TRB exhibited the highest water yield due to abundant precipitation and favorable topography,while the WRB recorded the lowest water yield owing to arid conditions and sparse vegetation.Precipitation played a significant role in shaping the annual fluctuations and total volume of water yield,with its variability exerting substantially greater impacts than actual evapotranspiration(AET)and LUCC.However,LUCC,particularly cultivated land expansion and grassland reduction,significantly reshaped the spatial distribution of water yield by modifying surface runoff and infiltration patterns.This study provides critical insights into the spatiotemporal dynamics of water yield in the LRB,emphasizing the synergistic effects of climate change and land use change,which are pivotal for optimizing water resource management and advancing regional ecological conservation.展开更多
The Three Gorges Project,the largest water conservation initiative globally,is located within the Three Gorges Reservoir Area(TGRA),a critical zone for water conservation and ecological protection.There is an urgent n...The Three Gorges Project,the largest water conservation initiative globally,is located within the Three Gorges Reservoir Area(TGRA),a critical zone for water conservation and ecological protection.There is an urgent need to better understand and protect the evolving water conservation functions of the TGRA,alongside identifying the driving mechanisms within its ecological barrier re-gion.This paper explores the spatial and temporal evolution of water conservation function in the TGRA from 1990 to 2020 and its fu-ture trends under different development scenarios from 2020 to 2030.Key driving factors influencing the water conservation function are identified,and a comprehensive development scenario is proposed.The findings indicate a general upward trend in the water conser-vation function of the TGRA,characterized by an initial increase,a subsequent decline,and a final recovery.Moreover,land use changes are found to be the primary factor driving these variations,followed by climatic factors such as precipitation.Under various de-velopment scenarios,the prioritization of water conservation outcomes is ranked as follows:ecological protection>cropland protec-tion>natural development>urban development.The results of this study offer valuable insights for balancing economic development with ecological preservation.展开更多
Carbon storage serves as a key indicator of ecosystem services and plays a vital role in maintaining the global carbon balance.Land use and cover change(LUCC)is one of the primary drivers influencing carbon storage va...Carbon storage serves as a key indicator of ecosystem services and plays a vital role in maintaining the global carbon balance.Land use and cover change(LUCC)is one of the primary drivers influencing carbon storage variations in terrestrial ecosystems.Therefore,evaluating the impacts of LUCC on carbon storage is crucial for achieving strategic goals such as the China’s dual carbon goals(including carbon peaking and carbon neutrality).This study focuses on the Aral Irrigation Area in Xinjiang Uygur Autonomous Region,China,to assess the impacts of LUCC on regional carbon storage and their spatiotemporal dynamics.A comprehensive LUCC database from 2000 to 2020 was developed using Landsat satellite imagery and the random forest classification algorithm.The integrated valuation of ecosystem services and trade-offs(InVEST)model was applied to quantify carbon storage and analyze its response to LUCC.Additionally,future LUCC patterns for 2030 were projected under multiple development scenarios using the patch-generating land use simulation(PLUS)model.These future LUCC scenarios were integrated with the InVEST model to simulate carbon storage trends under different land management pathways.Between 2000 and 2020,the dominant land use types in the study area were cropland(area proportion of 35.52%),unused land(34.80%),and orchard land(12.19%).The conversion of unused land and orchard land significantly expanded the area of cropland,which increased by 115,742.55 hm^(2).During this period,total carbon storage and carbon density increased by 7.87×10^(6) Mg C and 20.19 Mg C/hm^(2),respectively.The primary driver of this increase was the conversion of unused land into cropland,accounting for 49.28%of the total carbon storage gain.Carbon storage was notably lower along the northeastern and southeastern edges.By 2030,the projected carbon storage is expected to increase by 0.99×10^(6),1.55×10^(6),and 1.71×10^(6) Mg C under the natural development,cropland protection,and ecological conservation scenarios,respectively.In contrast,under the urban development scenario,carbon storage is projected to decline by 0.40×10^(6) Mg C.In line with China’s dual carbon goals,the ecological conservation scenario emerges as the most effective strategy for enhancing carbon storage.Accordingly,strict enforcement of the cropland red line is recommended.This study provides a valuable scientific foundation for regional ecosystem restoration and sustainable development in arid regions.展开更多
Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding s...Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.展开更多
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this...Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.展开更多
Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implicatio...Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.展开更多
The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors ...The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.展开更多
The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive un...The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive understanding of the spatiotemporal evolution of water conservation function and its driving factors remains incomplete in this basin.In this study,we utilized the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to examine the spatiotemporal evolution of water conservation function in the Huangshui River Basin from 2000 to 2020.Additionally,we employed the random forest model,Pearson correlation analysis,and geographical detector(Geodetector)techniques to investigate the primary factors and factor interactions affecting the spatial differentiation of water conservation function.The findings revealed several key points.First,the high-latitude northern region of the study area experienced a significant increase in water conservation over the 21-a period.Second,the Grain for Green project has played a substantial role in improving water conservation function.Third,precipitation,plant available water content(PAWC),grassland,gross domestic product(GDP),and forest land were primary factors influencing the water conservation function.Finally,the spatial differentiation of water conservation function was determined by the interactions among geographical conditions,climatic factors,vegetation biophysical factors,and socio-economic factors.The findings have significant implications for advancing ecological protection and restoration initiatives,enhancing regional water supply capabilities,and safeguarding ecosystem health and stability in the Huangshui River Basin.展开更多
Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resul...Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.展开更多
Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i...Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.展开更多
The importance of valuing environmental resources,especially in ecotourism sites,has become increasingly important over the last two decades.Ecotourism is now considered as an important source of livelihood of local s...The importance of valuing environmental resources,especially in ecotourism sites,has become increasingly important over the last two decades.Ecotourism is now considered as an important source of livelihood of local stakeholders in backward regions.Therefore,the preservation of ecotourism sites through community participation seems very important to maintain continued flow of tourists.This study aimed at recognizing the importance of community participation for the preservation of ecotourism sites.For this,this study executed a survey based on non-probability sampling in two ecotourism sites(Garpanchkot and Baranti)covering 100 respondents in Purulia District,West Bengal of India.The central issue of this study was to assess the tendency of community participation for the conservation of ecotourism sites and find the optimum condition for offering participatory labour time.This study showed that the participation of young people is high,and the majority of respondents are aware of the importance in protecting ecotourism sites.Because respondents were too poor to offer money,the contingent valuation method(CVM)was used to elicit their willingness to pay(WTP)participatory labour time for the conservation of ecotourism sites.Respondents’age,income,education level,caste,and their perceived environmental quality had significant relationship with their WTP participatory labour time by applying the ordinary least square(OLS)model.It was found that the mean WTP participatory labour time of each respondent in a month is approximately 3.64 h.The significance of this study is that community participation can improve the sense of belonging,trust,and credibility of ecotourism sites,making them more appreciative of the value and protection of these sites.展开更多
In the contemporary world, there are three interconnected global environmental crises (climate change, biodiversity loss, and pollution). The common thread is the unsustainable pattern of production and consumption, w...In the contemporary world, there are three interconnected global environmental crises (climate change, biodiversity loss, and pollution). The common thread is the unsustainable pattern of production and consumption, which leads to international and local socio-environmental injustices. Seeking environmental justice in Brazil, the success of the rubber tapper social movement stands out, culminating in the Chico Mendes Extractive Reserve (RESEX) implementation in the Brazilian Amazon. However, the residents have struggled to generate income to help their families’ social reproduction. Conventional payment instruments for environmental services have failed to remunerate the socio-environmental attributes of sustainable products adequately. This paper aims to carry out a socio-environmental economic-ecological valuation of the main extractive products of the RESEX in 2021/2022. To this end, a methodology calculates the cost of social reproduction of rural family production, being a non-market price index reference for monetary valuation. The results indicate the acceptability of the socio-environmental valuation of native rubber and Brazil nuts, as they can guarantee environmental conservation, improve the families’ well-being with adequate income for their social reproduction, as well as value attributes outside the market, which helps in the fight against further expropriation or enclosure of rural families in the Amazon.展开更多
Seagrass bed ecosystem is a coastal ecosystem with abundant biodiversity and high production. It is also an important system for the sustainable development of human society and economy. Based on the local research, s...Seagrass bed ecosystem is a coastal ecosystem with abundant biodiversity and high production. It is also an important system for the sustainable development of human society and economy. Based on the local research, statistical data and prevenient research results, the main services of Hepu seagrass ecosystem were analyzed in the paper, including fishing production, nutrient cycling, scientific research, protecting the coast from eroding, climate regulation, biodiversity, culture, bequest valuation, option valuation and existence valuation and so on. At the same time, we used ecological and economic methods for economic evaluation of seagrass in Hepu of Guangxi, including the market valuation method, contingent valuation method, carbon and tax method, benefit transfer method and expert survey method. The results showed that the total valuation of the Hepu seagrass ecosystem service was about 6.29 × 10^5 Yuan RMB/ha in 2005. Among these services, the indirect using valuation is the main aspect, which was 4.47 x 10^5Yuan RMB/ha in 2005, accounting for 70.97 % of the total valuation. The non-using valuation was 1.54 × 10^5 Yuan RMB/ha in 2005, accounting for 24.52 % of the total valuation. The direct using valuation is the least, which was only 2.84 × 10^4 Yuan RMB/ha in 2005, accounting for 4.51% of the total valuation.展开更多
基金funded by the National Natural Science Foundation of China(52079103)the Outstanding Youth Science Fund of Xi'an University of Science and Technology(2024YQ2-02).
文摘The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,causing carbon storage exchanges.However,the relationship between carbon storage and land use change in the MRYR is not concerned,which results in the uncertainty in the simulation of carbon storage in this area.Land use changes directly affect the carbon storage capacity of ecosystems,and as an indicator reflecting the overall state of land use,land use degree has an important relationship with carbon storage.In this study,land use data and the integrated valuation of ecosystem services and trade-offs(InVEST)model were used to assess the trends in land use degree and carbon storage in the MRYR during 1980-2020.The potential impact index and the standard deviation ellipse(SDE)algorithm were applied to quantify and analyze the characteristics of the impact of land use changes on carbon storage.Subsequently,land use transitions that led to carbon storage variations and their spatial variations were determined.The results showed that:(1)the most significant periods of carbon storage changes and land use transitions were observed during 1990-1995 and 1995-2020,with the most changed areas locating in the east of Fenhe River and in northwestern Henan Province;(2)the positive impact of land use degree on carbon storage may be related to the environmental protection measures implemented along the Yellow River,while the negative impact may be associated with the expansion of construction land in plain areas;and(3)the conversion of other land use types to grassland was the primary factor affecting carbon storage changes during 1980-2020.In future land use planning,attention should be given to the direction of grassland conversion,and focus on reasonably limiting the development of construction land.To enhance carbon storage,it will be crucial to increase the area of high-carbon-density land types,such as forest land and grassland under the condition that the area of permanent farmland does not decrease.
基金supported by the German Federal Ministry of Education and Research(BMBF)through their award of the K?te Hamburger Kolleg‘Cultures of Research’Senior Research Fellowship to Bart Penders
文摘Scientific reforms proposed in response to moral concerns about corrupted science are reminiscent of the Christian Reformation,which similarly formed a moral reorientation as a reaction to malpractices.In this study,we compare these moral reorientation processes to contextualize two different moral programmes of the scientific reform movement and their sociopolitical conditions.We argue that such an explication of moral programmes is vital to build legitimacy and reflect on value-prioritization.While epistemic programmes are foregrounded,moral programmes also play a crucial role in shaping science,and different moral programmes offer different promises for the sustained support of credible,reliable,fair and equitable science.We discuss the virtue and equity programmes,and through interrogating both programmes in relation to the Reformation,we display the relevance of sociopolitical contexts to how key values operate in science and generate orders of worth.These insights aim to stimulate debate about the conditions for opting for either of these moral programmes.In our view,not all moral programmes offer equal promise for the sustained support of credible,equitable and fair science.
文摘This study focuses on the risks associated with the on-balance sheet recognition of data resources.At the legal level,disputes over ownership often arise due to unclear data property rights,while privacy protection,cybersecurity,and cross-border data flows create additional compliance challenges.In terms of recognition,the subjectivity of traditional valuation methods,the lack of active markets,and the rapid depreciation of data value caused by technological iteration hinder reliable measurement.With respect to disclosure,organizations face a dilemma between transparency and confidentiality.Collectively,these issues exacerbate audit risks.It is therefore imperative to establish an appropriate legal,accounting,and auditing framework to mitigate such risks and remove barriers to the proper recognition of data assets on balance sheets.
基金funded by Korea Environmental Industry&Technology Institute(KEITI)through Wetland Ecosystem Value Evaluation and Carbon Absorption Value Promotion Technology Development Project of Korea Ministry of Environment(MOE)(RS-2022-KE002025).
文摘Urbanization and environmental degradation have led to significant declines in water quality and aquatic ecosystem health,highlighting the urgent need for effective restoration efforts.This study applies an integrated analysis approach to estimate the economic value and benefits of improvements in water quality and aquatic ecosystem services resulting from the Ecological Stream Restoration Project.Using survey data analyzed through the choice experiment(CE)method,we assessed respondents’preferences for various ecosystem services,including water-friendly services,ecological functions,water-level control,and water-quality purification.Three empirical analysis models—the Conditional Logit Model(CLM),Nested Logit Model(NL),and Error Component Logit Model(ECL)—were applied,with the ECL model identified as the most suitable for this study.From the physical impact assessment,we derived compensating variations to estimate the annual economic benefits of the project.The estimated annual economic value of water quality improvement due to the Anyangcheon Ecological Stream Restoration Project ranged from approximately KRW 10.54 billion to KRW 21.44 billion,while the economic value of aquatic ecosystem improvement was estimated to range from KRW 6.05 billion to KRW 12.30 billion annually.This study provides analytic framework that can inform future ecological restoration projects and sustainable water management policies.
基金financed as part of the project“Development of a methodology for instrumental base formation for analysis and modeling of the spatial socio-economic development of systems based on internal reserves in the context of digitalization”(FSEG-2023-0008)funded by the Russian Science Foundation(Agreement 23-41-10001,https://doi.org/https://rscf.ru/project/23-41-10001/).
文摘The results of mass appraisal in many countries are used as a basis for calculating the amount of real estate tax,therefore,regardless of the methods used to calculate it,the resulting value should be as close as possible to the market value of the real estate to maintain a balance of interests between the state and the rights holders.In practice,this condition is not always met,since,firstly,the quality of market data is often very low,and secondly,some markets are characterized by low activity,which is expressed in a deficit of information on asking prices.The aim of the work is ecological valuation of land use:how regression-based mass appraisal can inform ecological conservation,land degradation,and sustainable land management.Four multiple regression models were constructed for AI generated map of land plots for recreational use in St.Petersburg(Russia)with different volumes of market information(32,30,20 and 15 units of market information with four price-forming factors).During the analysis of the quality of the models,it was revealed that the best result is shown by the model built on the maximum sample size,then the model based on 15 analogs,which proves that a larger number of analog objects does not always allow us to achieve better results,since the more analog objects there are.
基金funded by Korea Environmental Industry&Technology Institute(KEITI)through“Development of Aquatic Ecosystem Service Evaluation Indicators and Valuation Technology”of the Korea Ministry of Environment(MOE)(RS-2025-02214985).
文摘This study examines the empirical feasibility of quantitatively integrating environmental value information into Strategic Environmental Assessment(SEA).An analytical framework was established to incorporate environmental cost estimates into the SEA process by utilizing ecosystem service unit values provided by the Environmental Valuation Information System(EVIS),a national platform developed to support the evaluation of policies and projects.The framework was applied to a case study involving a multipurpose rural water development project in South Korea.Ecosystem service losses resulting from the project were quantified using biophysical indicators,such as vegetation biomass,forest area,and hydrological functions,and subsequently monetized through the application of the market price method,replacement cost method,and contingent valuation method.The total annual environmental cost was estimated to be approximately KRW 56.18 billion,with the majority attributable to losses in forest conservation and climate regulation services.These findings demonstrate that quantified environmental data can serve as a robust basis for alternative comparison and site evaluation within SEA.The study provides empirical evidence supporting the advancement of SEA from a predominantly procedural tool focused on environmental protection to a more comprehensive sustainability assessment framework that integrates environmental,economic,and social considerations.Furthermore,the results suggest that EVIS-based quantitative information holds potential for broader application in other national evaluation systems,such as preliminary feasibility studies and regulatory impact assessments.
基金funded by the Liaoning Provincial Social Science Planning Fund(L22AYJ010).
文摘The Liaohe River Basin(LRB)in Northeast China,a critical agricultural and industrial zone,has faced escalating water resource pressures in recent decades due to rapid urbanization,intensified land use changes,and climate variability.Understanding the spatiotemporal dynamics of water yield and its driving factors is essential for sustainable water resource management in this ecologically sensitive region.This study employed the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to quantify the spatiotemporal patterns of water yield in the LRB(dividing into six sub-basins from east to west:East Liaohe River Basin(ELRB),Taizi River Basin(TRB),Middle Liaohe River Basin(MLRB),West Liaohe River Basin(WLRB),Xinkai River Basin(XRB),and Wulijimuren River Basin(WRB))from 1993 to 2022,with a focus on the impacts of climate change and land use cover change(LUCC).Results revealed that the LRB had an average annual precipitation of 483.15 mm,with an average annual water yield of 247.54 mm,both showing significant upward trend over the 30-a period.Spatially,water yield demonstrated significant heterogeneity,with higher values in southeastern sub-basins and lower values in northwestern sub-basins.The TRB exhibited the highest water yield due to abundant precipitation and favorable topography,while the WRB recorded the lowest water yield owing to arid conditions and sparse vegetation.Precipitation played a significant role in shaping the annual fluctuations and total volume of water yield,with its variability exerting substantially greater impacts than actual evapotranspiration(AET)and LUCC.However,LUCC,particularly cultivated land expansion and grassland reduction,significantly reshaped the spatial distribution of water yield by modifying surface runoff and infiltration patterns.This study provides critical insights into the spatiotemporal dynamics of water yield in the LRB,emphasizing the synergistic effects of climate change and land use change,which are pivotal for optimizing water resource management and advancing regional ecological conservation.
基金Under the auspices of Key Project of the Ministry of Water Resources(No.E202291801,E203101901)National Key R&D Program of China(No.2019QZKK0401)。
文摘The Three Gorges Project,the largest water conservation initiative globally,is located within the Three Gorges Reservoir Area(TGRA),a critical zone for water conservation and ecological protection.There is an urgent need to better understand and protect the evolving water conservation functions of the TGRA,alongside identifying the driving mechanisms within its ecological barrier re-gion.This paper explores the spatial and temporal evolution of water conservation function in the TGRA from 1990 to 2020 and its fu-ture trends under different development scenarios from 2020 to 2030.Key driving factors influencing the water conservation function are identified,and a comprehensive development scenario is proposed.The findings indicate a general upward trend in the water conser-vation function of the TGRA,characterized by an initial increase,a subsequent decline,and a final recovery.Moreover,land use changes are found to be the primary factor driving these variations,followed by climatic factors such as precipitation.Under various de-velopment scenarios,the prioritization of water conservation outcomes is ranked as follows:ecological protection>cropland protec-tion>natural development>urban development.The results of this study offer valuable insights for balancing economic development with ecological preservation.
基金supported by the National Key R&D Program of China(2022YFD1900503).
文摘Carbon storage serves as a key indicator of ecosystem services and plays a vital role in maintaining the global carbon balance.Land use and cover change(LUCC)is one of the primary drivers influencing carbon storage variations in terrestrial ecosystems.Therefore,evaluating the impacts of LUCC on carbon storage is crucial for achieving strategic goals such as the China’s dual carbon goals(including carbon peaking and carbon neutrality).This study focuses on the Aral Irrigation Area in Xinjiang Uygur Autonomous Region,China,to assess the impacts of LUCC on regional carbon storage and their spatiotemporal dynamics.A comprehensive LUCC database from 2000 to 2020 was developed using Landsat satellite imagery and the random forest classification algorithm.The integrated valuation of ecosystem services and trade-offs(InVEST)model was applied to quantify carbon storage and analyze its response to LUCC.Additionally,future LUCC patterns for 2030 were projected under multiple development scenarios using the patch-generating land use simulation(PLUS)model.These future LUCC scenarios were integrated with the InVEST model to simulate carbon storage trends under different land management pathways.Between 2000 and 2020,the dominant land use types in the study area were cropland(area proportion of 35.52%),unused land(34.80%),and orchard land(12.19%).The conversion of unused land and orchard land significantly expanded the area of cropland,which increased by 115,742.55 hm^(2).During this period,total carbon storage and carbon density increased by 7.87×10^(6) Mg C and 20.19 Mg C/hm^(2),respectively.The primary driver of this increase was the conversion of unused land into cropland,accounting for 49.28%of the total carbon storage gain.Carbon storage was notably lower along the northeastern and southeastern edges.By 2030,the projected carbon storage is expected to increase by 0.99×10^(6),1.55×10^(6),and 1.71×10^(6) Mg C under the natural development,cropland protection,and ecological conservation scenarios,respectively.In contrast,under the urban development scenario,carbon storage is projected to decline by 0.40×10^(6) Mg C.In line with China’s dual carbon goals,the ecological conservation scenario emerges as the most effective strategy for enhancing carbon storage.Accordingly,strict enforcement of the cropland red line is recommended.This study provides a valuable scientific foundation for regional ecosystem restoration and sustainable development in arid regions.
基金Under the auspices of the National Social Science Found of China(No.21XGL019)Hainan Provincial Natural Science Foundation of China(No.421RC1034)Professor/Doctor Research Foundation of Huizhou University(No.2022JB080)。
文摘Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.
基金supported by the Innovation Projects for Overseas Returnees of Ningxia Hui Autonomous Region-Study on Multi-Scenario Land Use Optimization and Carbon Storage in the Ningxia Section of Yellow River Basin(202303)the National Natural Science Foundation of China(42067022,41761066)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC03024)。
文摘Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.
基金supported by the Innovation Capability Support Program of Shaanxi Province,China(2023-CX-RKX-102)the Key Research and Development Program of Shaanxi Province,China(2022FP-34)+1 种基金the Open Foundation of the Key Laboratory of Natural Resource Coupling Process and Effects(2023KFKTB008)the Open Fund of Shaanxi Key Laboratory of Land Consolidation,China(300102352502).
文摘Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.
基金Under the auspices of National Natural Science Foundation of China (No.41977402,41977194)。
文摘The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.
基金funded by the National Key R&D Program of China(2023YFC3008502)the National Natural Science Foundation of China(52309103)+2 种基金the Major Science and Technology Programs of the Ministry of Water Resources(MWR)(SKS-2022002)the Chengde Applied Technology Research and Development and Sustainable Development Agenda Innovation Demonstration Zone Special Science and Technology Plan Project(202305B009)the Qinghai Province Applied Basic Research Program(2024-ZJ-773).
文摘The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive understanding of the spatiotemporal evolution of water conservation function and its driving factors remains incomplete in this basin.In this study,we utilized the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to examine the spatiotemporal evolution of water conservation function in the Huangshui River Basin from 2000 to 2020.Additionally,we employed the random forest model,Pearson correlation analysis,and geographical detector(Geodetector)techniques to investigate the primary factors and factor interactions affecting the spatial differentiation of water conservation function.The findings revealed several key points.First,the high-latitude northern region of the study area experienced a significant increase in water conservation over the 21-a period.Second,the Grain for Green project has played a substantial role in improving water conservation function.Third,precipitation,plant available water content(PAWC),grassland,gross domestic product(GDP),and forest land were primary factors influencing the water conservation function.Finally,the spatial differentiation of water conservation function was determined by the interactions among geographical conditions,climatic factors,vegetation biophysical factors,and socio-economic factors.The findings have significant implications for advancing ecological protection and restoration initiatives,enhancing regional water supply capabilities,and safeguarding ecosystem health and stability in the Huangshui River Basin.
基金Under the auspices of the National Natural Science Fundation (No.41901121,42276234)Open Funding of Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research (No.LHGTXT-2024-004)+1 种基金Science and Technology Major Project of Ningbo (No.2022Z181)Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources (No.2023CZEPK04)。
文摘Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.
基金This research was funded by the Key Laboratory for Sustainable Development of Xinjiang's Historical and Cultural Tourism,Xinjiang University,China(LY2022-06)the Tianchi Talent Project.
文摘Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.
文摘The importance of valuing environmental resources,especially in ecotourism sites,has become increasingly important over the last two decades.Ecotourism is now considered as an important source of livelihood of local stakeholders in backward regions.Therefore,the preservation of ecotourism sites through community participation seems very important to maintain continued flow of tourists.This study aimed at recognizing the importance of community participation for the preservation of ecotourism sites.For this,this study executed a survey based on non-probability sampling in two ecotourism sites(Garpanchkot and Baranti)covering 100 respondents in Purulia District,West Bengal of India.The central issue of this study was to assess the tendency of community participation for the conservation of ecotourism sites and find the optimum condition for offering participatory labour time.This study showed that the participation of young people is high,and the majority of respondents are aware of the importance in protecting ecotourism sites.Because respondents were too poor to offer money,the contingent valuation method(CVM)was used to elicit their willingness to pay(WTP)participatory labour time for the conservation of ecotourism sites.Respondents’age,income,education level,caste,and their perceived environmental quality had significant relationship with their WTP participatory labour time by applying the ordinary least square(OLS)model.It was found that the mean WTP participatory labour time of each respondent in a month is approximately 3.64 h.The significance of this study is that community participation can improve the sense of belonging,trust,and credibility of ecotourism sites,making them more appreciative of the value and protection of these sites.
文摘In the contemporary world, there are three interconnected global environmental crises (climate change, biodiversity loss, and pollution). The common thread is the unsustainable pattern of production and consumption, which leads to international and local socio-environmental injustices. Seeking environmental justice in Brazil, the success of the rubber tapper social movement stands out, culminating in the Chico Mendes Extractive Reserve (RESEX) implementation in the Brazilian Amazon. However, the residents have struggled to generate income to help their families’ social reproduction. Conventional payment instruments for environmental services have failed to remunerate the socio-environmental attributes of sustainable products adequately. This paper aims to carry out a socio-environmental economic-ecological valuation of the main extractive products of the RESEX in 2021/2022. To this end, a methodology calculates the cost of social reproduction of rural family production, being a non-market price index reference for monetary valuation. The results indicate the acceptability of the socio-environmental valuation of native rubber and Brazil nuts, as they can guarantee environmental conservation, improve the families’ well-being with adequate income for their social reproduction, as well as value attributes outside the market, which helps in the fight against further expropriation or enclosure of rural families in the Amazon.
文摘Seagrass bed ecosystem is a coastal ecosystem with abundant biodiversity and high production. It is also an important system for the sustainable development of human society and economy. Based on the local research, statistical data and prevenient research results, the main services of Hepu seagrass ecosystem were analyzed in the paper, including fishing production, nutrient cycling, scientific research, protecting the coast from eroding, climate regulation, biodiversity, culture, bequest valuation, option valuation and existence valuation and so on. At the same time, we used ecological and economic methods for economic evaluation of seagrass in Hepu of Guangxi, including the market valuation method, contingent valuation method, carbon and tax method, benefit transfer method and expert survey method. The results showed that the total valuation of the Hepu seagrass ecosystem service was about 6.29 × 10^5 Yuan RMB/ha in 2005. Among these services, the indirect using valuation is the main aspect, which was 4.47 x 10^5Yuan RMB/ha in 2005, accounting for 70.97 % of the total valuation. The non-using valuation was 1.54 × 10^5 Yuan RMB/ha in 2005, accounting for 24.52 % of the total valuation. The direct using valuation is the least, which was only 2.84 × 10^4 Yuan RMB/ha in 2005, accounting for 4.51% of the total valuation.