Single-atom catalysts(SACs)have attracted considerable interest in the fields of energy and environmental science due to their adjustable catalytic activity.In this study,we investigated the matching of valence electr...Single-atom catalysts(SACs)have attracted considerable interest in the fields of energy and environmental science due to their adjustable catalytic activity.In this study,we investigated the matching of valence electron numbers between single atoms and adsorbed intermediates(O,N,C,and H)in MXene-anchored SACs(M-Ti_(2)C/M-Ti_(2)CO_(2)).The density functional theory results demonstrated that the sum of the valence electron number(VM)of the interface-doped metal and the valence electron number(VA)of the adsorbed intermediates in M-Ti_(2)C followed the 10-valence electron matching law.Furthermore,based on the 10-valence electron matching law,we deduced that the sum of the valence electron number(k)and VMfor the molecular adsorption intermediate interactions in M-Ti_(2)CO_(2)adhered to the 11-valence electron matching law.Electrostatic repulsion between the interface electrons in M-Ti_(2)CO_(2)and H_(2)O weakened the adsorption of intermediates,Furthermore,we applied the 11-valence electron matching law to guide the design of catalysts for nitrogen reduction reaction,specifically for N_(2)→NNH conversion,in the MTi_(2)CO_(2)structure.The sure independence screening and sparsifying operator algorithm was used to fit a simple three-dimensional descriptor of the adsorbate(R_(2)up to 0.970)for catalyst design.Our study introduced a valence electron matching principle between doped metals(single atoms)and adsorbed intermediates(atomic and molecular)for MXene-based catalysts,providing new insights into the design of high-performance SACs.展开更多
Intermetallic compounds REIn_(3)(RE=rare earth)have attracted much attention due to their unique characteristics:crystal field effect,Kondo effect,superconductivity,heavy fermion,and antiferromagnetism,and their cobal...Intermetallic compounds REIn_(3)(RE=rare earth)have attracted much attention due to their unique characteristics:crystal field effect,Kondo effect,superconductivity,heavy fermion,and antiferromagnetism,and their cobalt diluted alloys exhibit the ferromagnetic half-metallic characteristics at room temperature.In this study,an empirical electron theory(EET)is employed to investigate systemically the valence electronic structure,the thermal and magnetic properties of REX_(3) and their cobalt diluted alloys for revealing the mechanism of physical properties.The calculated bond length,melting point,and magnetic moment match the experimental ones very well.The study reveals that structural stability and physical properties of REX_(3) and their cobalt dilute alloys are strongly related to their valence electron structures.It is suggested that the structural stability and cohesive energy depend upon the covalent electron,the melting point is modulated by covalent electron pair,and the magnetic moment is originated from 3d magnetic electron.The ferromagnetic characteristics of Co-diluted REIn3 alloys is originated from the introduction of strong ferromagnetic Co atom,but,a competition is caused between the electron transition from valence electron to magnetic electron on d orbit and its reversal electron transformation with increasing the content of cobalt,which results in the formations of diluted magnetic Gd(In,Co)_(3) alloy with minor amount of cobalt and strong magnetic Nd(In,Co)_(3) alloy with doping more Co atoms.展开更多
We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group e...We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group electronegativity, and atomic charge. The ionization potential of alkanes and mono-substituted alkanes, the chemical shift of 1H NMR, and the gas phase proton affinity of aliphatic amines, alcohols, and ethers were estimated. All the expressions have good correlations. Moreover, the Sanderson method and Bratsch method were modified on the basis of the valence electrons equilibration theory. The modified Sanderson method and modified Bratsch method are more effective than their original methods to estimate these properties.展开更多
The crystal structure and physical properties of Nb_(25)Mo_(5+x)Re_(35)Ru_(25-x)Rh_(10)(0≤x≤10)and Nb_(5)Mo_(35-y)Re_(15+y)Ru_(35)Rh_(10)(0≤y≤15)high-entropy alloys(HEAs)have been studied by X-ray diffraction,elec...The crystal structure and physical properties of Nb_(25)Mo_(5+x)Re_(35)Ru_(25-x)Rh_(10)(0≤x≤10)and Nb_(5)Mo_(35-y)Re_(15+y)Ru_(35)Rh_(10)(0≤y≤15)high-entropy alloys(HEAs)have been studied by X-ray diffraction,electrical resistivity,magnetic susceptibility,and specific heat measurements.The results show that the former HEAs with valence electron concentration(VEC)values of 6.7-6.9 crystallize in a noncentrosymmetric cubicα-Mn structure,while the latter ones with VEC values of 7.1-7.25 adopt a centrosymmetric hexagonal close-packed(hcp)structure.Despite different structures,both series of HEAs are found to be bulk superconductors with a full energy gap,and the superconducting transition temperature Tc tends to decrease with the increase of VEC.Nevertheless,the Tc values of the hcp-type HEAs are higher than those of theα-Mn-type ones,likely due to a stronger electron phonon coupling.Furthermore,we show that VEC and electronegativity difference are two key parameters to control the stability ofα-Mn and hcp-type HEAs.These results not only are helpful for the design of such HEAs,but also represent the first realization of structurally different HEA superconductors without changing the constituent elements.展开更多
The low valence electron concentration(VEC)Al_(x)CoCrFeNiSi(x=0.5,1.0,1.5 and 2.0)high-entropy alloys(HEAs)were designed by the fundamental properties of the constituent elements and prepared by vacuum arc melting met...The low valence electron concentration(VEC)Al_(x)CoCrFeNiSi(x=0.5,1.0,1.5 and 2.0)high-entropy alloys(HEAs)were designed by the fundamental properties of the constituent elements and prepared by vacuum arc melting method.The effects of Al addition on the crystal structure and microstructure were investigated.The microhardness and wear property were also researched.The results showed that the microstructure transformed from dendritic crystal to equiaxed crystal.It was found that FCC phase gradually decreased with the increasing Al content and disappeared until in a composition of 1.0 in Al_(x)CoCrFeNiSi HEAs.Little FCC phase was found with continuously adding Al,while the phase fraction of BCC increased from 85.0% to 91.8%,and VEC decreased from 7.00 to 6.14.The microhardness was increased gradually from 598 up to 909 HV with addition of Al from 0.5 to 2.0.It was the same of the compressive strength results,which improved from 1200 to 1920 MPa.The wear coefficient and mass loss were in line with mechanical properties evolution,which was attributed to the microstructure transformation into equiaxed crystal and the increase in BCC phase.展开更多
By measuring the hardness of carburized layer of a new type supersaturated carburizing steel (35Cr3SiMnMoV) at different temper temperature for 2 h, the relationship curve between the carburized layer hardness and t...By measuring the hardness of carburized layer of a new type supersaturated carburizing steel (35Cr3SiMnMoV) at different temper temperature for 2 h, the relationship curve between the carburized layer hardness and the temper temperature is established. The result indicates that the hardness goes down firstly, then up and down, just like a wave consistent with the temperature increase. A secondary hardening peak appears at 570 ℃ or so. Based on Empirical Election Theory (EET) of Solids and Molecules, the valence electron structures (VESs) containing α-Fe-C, α-Fe-C-Me segregation structure units and carbide are calculated. The laws of temper process and hardness change with the temper temperature are explained, and the fact that reconstruction of θ-Fe3C is prior to that of special carbide at high tempering is analyzed with the phase structure formation factor, S, being taken into consideration. Therefore, the laws of temper process and hardness change of supersaturated carburized layer at different temper temperature can be traced back to valence electron structure (VES) level of alloy phase.展开更多
The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was ...The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was proposed, i.e. the 1/(nAnB) increases with increasing the ionic conductivity when x or y〈20% (in molar fraction).展开更多
According to EET theory, the valence electron structures of RE in the solid solution of austenite, pearlite and martensite were calculated. The influence of RE in solid solution on phase transformation of pearlite and...According to EET theory, the valence electron structures of RE in the solid solution of austenite, pearlite and martensite were calculated. The influence of RE in solid solution on phase transformation of pearlite and recrystallization of martensite was explained by the valence electron structure data of phases. Calculating results indicate that C element is favorite to enhance the number of RE in the solid solution. RE in the solute solution shortens the incubation period of proeutectoid ferrite, increases its quantity and carbon content, decreases the quantity of pearlite and thickness of its lamellas and lamellar spacing, then the strength and hardness of pearlite are improved and granular pearlite can be obtained. RE dissolved in martensite intensifies martensite, enhances tempering stability of martensite, increases its recrystallization temperature and prolongs the holding time needed during tempering.展开更多
By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) w...By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) with nA, the number of electrons on the strongest covalent bonds, and the structure formation factor S were investigated, and an electron structural criterion to control and to eliminate the centerline segregation was advanced. Basing on this, the electron structures of a part of rare earth phosphides and sulfides are calculated, the physical mechanism that rare earth elements can control the segregation of phosphor and sulfur is analyzed, and the criterion is well verified.展开更多
Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by u...Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by using the positron lifetime parameters. Density of valence electron is low in the bulk of Fe3Al alloy. It indicates that, the 3d electrons in a Fe atom have strong-localized properties and tend to form covalent bonds with Al atoms, and the bonding nature in Fe3Al is a mixture of metallic and covalent bonds. The density of valence electron is very low in the defects of Fe3Al grain boundary, which makes the bonding cohesion in grain boundary quite weak. The addition of Si to Fe3Al gives rise to the decrease of the densities of valence electrons in the bulk and the grain boundary thus the metallic bonding cohesion. This makes the alloy more brittle. The addition of Nb to Fe3Al results in the decrease of the ordering energy of the alloy and increases the density of valence electron and the bonding cohesion of the grain boundary. However, since the radius of Nb atom is larger than that of Fe atom, when Nb atoms substitute for Fe atoms, they will distort the lattice and enlarge the volume of the lattice, which decreases the density of valence electron and the cohesion of metallic bond in the bulk of the alloy.展开更多
Based on the empirical electron theory of solids and molecules of S. H. Yu, this paper proposes (i) the calculating model of valence electron structures in L_2~'-type substitutional and interstitial complex solid ...Based on the empirical electron theory of solids and molecules of S. H. Yu, this paper proposes (i) the calculating model of valence electron structures in L_2~'-type substitutional and interstitial complex solid solutions; (ii) the bond length difference analysis (BLD) method of unknown bond length structure solid solutions; (iii) the treatment of uncertainty of BLD analysis solution.展开更多
The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent,met...The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent,metallic and ionic characters. For a quantitative analysis of the relative strength of these components,their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN,which coincides to that de-duced from the first-principles method.展开更多
Chloroplasts were isolated from spinach treated with taCl3, CeCl3, and NdCl3. Because of owning 4f electron characteristics and alternation valence, Ce treatment presented the highest enhancement in light absorption, ...Chloroplasts were isolated from spinach treated with taCl3, CeCl3, and NdCl3. Because of owning 4f electron characteristics and alternation valence, Ce treatment presented the highest enhancement in light absorption, energy transfer from LHC Ⅱ to PS Ⅱ, excitation energy distribution from PS Ⅰ to PS Ⅱ, and fluorescence quantum yield around 680 nm. Compared with Ce treatment, Nd treatment resulted in relatively lower enhancement in these physiological indices, as Nd did not have alternation valence. La treatment presented the lowest enhancement, as La did not have either 4f electron or alternation valence. The increase in activities of whole chain electron transport, PS ⅡDCPIP photoreduction, and oxygen evolution of chloroplasts was of the following order: Ce〉Nd 〉La〉 control. However, the photoreduction activities of spinach PS I almost did not change with La, Ce, or Nd treatments. The results suggested that 4f electron characteristics and alternation valence of rare earths had a close relationship with photosynthesis improvement.展开更多
To harvest the sun light and to promote the amount of energy stored,a new binary compound which links a sensitizer(electron donor), anthracene,and substrate(electron acceptor),norbornadiene,in a non- conjugated manner...To harvest the sun light and to promote the amount of energy stored,a new binary compound which links a sensitizer(electron donor), anthracene,and substrate(electron acceptor),norbornadiene,in a non- conjugated manner without increase in molecular weight was synthesized.The inter-and intramolecular photosensitized isomerization and the mechanism were studied.展开更多
The recently established theory has built clear connections between hardness and toughness and electron structure involving both valence electron concentration(VEC)and core electron count(CEC)in transition metal nitri...The recently established theory has built clear connections between hardness and toughness and electron structure involving both valence electron concentration(VEC)and core electron count(CEC)in transition metal nitride(TMN)ceramics.However,the underlying deformation mechanisms remain unclear.Herein,we conduct in-depth analysis on microstructure evolution during deformation of the high VEC-CEC solution TiMoN coatings having desired combination of high hardness and toughness.The effects of solid solution,preferred orientation linked with symbiotic compressive stress,grain size and dislocations are systematically discussed.We discover that numerous dislocations have been implanted into the nanocrystals of the TiMoN coating during the high-ionization arc deposition.Using two-beam bright-field imaging,we count the dislocation density and confirm occurrence of dislocation multiplication to form effective plastic deformation,which contributes to significant strain hardening,comparable to solid solution hardening,fine-grain hardening and compressive stress hardening.The improved dislocation activities also play a crucial role in enhancing the toughness by providing extra energy dissipation paths.This work gains new insights into the origins of mechanical properties of ceramic coatings and possibility to tune them via defects.展开更多
The differences of grain-refining effect between Sc and Ti additions in aluminum,which cannot be substantially explained by traditional theories,were carefully studied.The empirical electron theory(EET) of solids and ...The differences of grain-refining effect between Sc and Ti additions in aluminum,which cannot be substantially explained by traditional theories,were carefully studied.The empirical electron theory(EET) of solids and molecules was employed to calculate the valence electron structures(VES) of Al3Ti and Al3Sc.The conclusions can be drawn that,in the two alloys Al-Ti and Al-Sc,the different valence electron structures of Al3Ti and Al3Sc and the consequent differences of growth habit of the two particles,and the different interfacial electron density between particles and matrix fundamentally lead to the differences of grain-refining effect between Sc and Ti additions on aluminum and make Sr the better grain-refiner of aluminum.展开更多
Based on the empirical electronic theory of solids and molecules (EET), the actual model for unit cell of cementite (0-FeaC) was built and the valence electron structures (VES) of cementite with specified site a...Based on the empirical electronic theory of solids and molecules (EET), the actual model for unit cell of cementite (0-FeaC) was built and the valence electron structures (VES) of cementite with specified site and a number of Fe atoms substituted by alloying atoms of M ( M=Cr, V, W, Mo, Mn ) were computed by statistical method. By defining P as the stability factor, the stability of alloyed cementite with different numbers and sites of Fe atoms substituted by M was calculated. Calculation results show that the density of lattice electrons, the symmetry of distribution of covalent electron pairs and bond energy have huge influence on the stability of alloyed cementite. It is more stable as M substitutes for FeE than for Fe1. The alloyed cementite is the most stable when Cr, Mo, W and V substitute for 2 atoms of Fe2 at the sites of Nos. 2 and 3 (or No. 6 and No. 7). The stability of alloyed cementite decreases gradually as being substitutional doped by W, Cr, V, Mo and Mn.展开更多
The Eu-doped Cu(In, Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical...The Eu-doped Cu(In, Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical properties than those of CuInTe2. In this paper, the Eu-doped CuInTe2 (CuIn1-xEuxTe2, x = 0, 0.1, 0.2, 0.3) are studied systemically based on the empirical electron theory (EET). The studies cover crystal structures, bonding regularities, cohesive energies, energy levels, and valence electron structures. The theoretical values fit the experimental results very well. The physical mechanism of a broadened band-gap induced by Eu doping into CuInTe2 is the transitions between different hybridization energy levels induced by electron hopping between s and d orbitals and the transformations from the lattice electrons to valence electrons for Cu and In ions. The research results reveal that the photovoltaic effect induces the increase of lattice electrons of In and causes the electric resistivity to decrease. The Eu doping into CuInTe2 mainly influences the transition between different hybridization energy levels for Cu atoms, which shows that the 3d electron numbers of Cu atoms change before and after Eu doping. In single phase CuIn1-xEuxTe2, the number of valence electrons changes regularly with increasing Eu content, and the calculated band gap Eg also increases, which implies that the optical properties of Eu-doped CuIn1-xEuxTe2 are improved.展开更多
The valence electron structure of alloying austenite of 3C-15Cr high chromium white cast iron with different Mn contents from 1% to 6% is analyzed by BLD method and EET. Results show that the addition of Mn has major ...The valence electron structure of alloying austenite of 3C-15Cr high chromium white cast iron with different Mn contents from 1% to 6% is analyzed by BLD method and EET. Results show that the addition of Mn has major influence on the valence electron structure of the alloying austenite, especially on that of Fe-C, Fe-C-Cr and Fe-C-Cr-Mn unit cells of it. The effect becomes weak when Mn content is over 4%. Based on the effect of n~, F~~, the weighting of each unit cell and the degree of undercooling on phase transition of the aus- tenite, we can calculate the retained austenite content of as-cast structure of the high chromium white cast iron. The calculation results coincide well with those of the experiment. The phase transition characters of the austenite in high chromium white cast iron can be forecasted through valence electron structure analysis of alloying austenite by BLD method and EET on the basis of Fe-C-Cr equilibrium phase diagram.展开更多
MnO and CeO2 powders were mechanically mixed by a spatula and by milling to obtain loose-contact and tight-contact mixed oxides,respectively.The monoxides and their physical mixtures were characterized by X-ray diffra...MnO and CeO2 powders were mechanically mixed by a spatula and by milling to obtain loose-contact and tight-contact mixed oxides,respectively.The monoxides and their physical mixtures were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),X-ray photoelectron spectroscopy(XPS),Raman,O2 temperature-programmed desorption(O2-TPD),H2 temperature-programmed reduction(H2-TPR) and NO temperature-programmed oxidation(NO-TPO).The MnOx-CeO2 solid solutions did not form without any calcination process.The oxidation state of manganese tended to increase while the ionic valence of cerium decreased in the mixed oxides,accompanied with the formation of oxygen vacancies.This long-ranged electronic interaction occured more significantly in the tight-contact mixture of MnO and CeO2.The formation of more Mn4+and oxygen vacancies promoted the catalytic oxidation of NO in an oxygen-rich atmosphere.展开更多
基金funded by the National Natural Science Foundation of China(61701288,51706128)the Natural Science Basic Research Program of Shaanxi Province(2021JM-485)+2 种基金the Key Scientific Research Project of Shaanxi Provincial Education Department(20JS019)the High-level Achievement Cultivation Project of Collaborative Innovation Center for Comprehensive Development of Qinba Biological Resources(QBXT-17-8)the Postgraduate Innovation Project of Shaanxi University of Technology(SLGYCX2410).
文摘Single-atom catalysts(SACs)have attracted considerable interest in the fields of energy and environmental science due to their adjustable catalytic activity.In this study,we investigated the matching of valence electron numbers between single atoms and adsorbed intermediates(O,N,C,and H)in MXene-anchored SACs(M-Ti_(2)C/M-Ti_(2)CO_(2)).The density functional theory results demonstrated that the sum of the valence electron number(VM)of the interface-doped metal and the valence electron number(VA)of the adsorbed intermediates in M-Ti_(2)C followed the 10-valence electron matching law.Furthermore,based on the 10-valence electron matching law,we deduced that the sum of the valence electron number(k)and VMfor the molecular adsorption intermediate interactions in M-Ti_(2)CO_(2)adhered to the 11-valence electron matching law.Electrostatic repulsion between the interface electrons in M-Ti_(2)CO_(2)and H_(2)O weakened the adsorption of intermediates,Furthermore,we applied the 11-valence electron matching law to guide the design of catalysts for nitrogen reduction reaction,specifically for N_(2)→NNH conversion,in the MTi_(2)CO_(2)structure.The sure independence screening and sparsifying operator algorithm was used to fit a simple three-dimensional descriptor of the adsorbate(R_(2)up to 0.970)for catalyst design.Our study introduced a valence electron matching principle between doped metals(single atoms)and adsorbed intermediates(atomic and molecular)for MXene-based catalysts,providing new insights into the design of high-performance SACs.
文摘Intermetallic compounds REIn_(3)(RE=rare earth)have attracted much attention due to their unique characteristics:crystal field effect,Kondo effect,superconductivity,heavy fermion,and antiferromagnetism,and their cobalt diluted alloys exhibit the ferromagnetic half-metallic characteristics at room temperature.In this study,an empirical electron theory(EET)is employed to investigate systemically the valence electronic structure,the thermal and magnetic properties of REX_(3) and their cobalt diluted alloys for revealing the mechanism of physical properties.The calculated bond length,melting point,and magnetic moment match the experimental ones very well.The study reveals that structural stability and physical properties of REX_(3) and their cobalt dilute alloys are strongly related to their valence electron structures.It is suggested that the structural stability and cohesive energy depend upon the covalent electron,the melting point is modulated by covalent electron pair,and the magnetic moment is originated from 3d magnetic electron.The ferromagnetic characteristics of Co-diluted REIn3 alloys is originated from the introduction of strong ferromagnetic Co atom,but,a competition is caused between the electron transition from valence electron to magnetic electron on d orbit and its reversal electron transformation with increasing the content of cobalt,which results in the formations of diluted magnetic Gd(In,Co)_(3) alloy with minor amount of cobalt and strong magnetic Nd(In,Co)_(3) alloy with doping more Co atoms.
文摘We take the contribution of all valence electrons into consideration and propose a new valence electrons equilibration method to calculate the equalized electronegativity including molecular electronegativity, group electronegativity, and atomic charge. The ionization potential of alkanes and mono-substituted alkanes, the chemical shift of 1H NMR, and the gas phase proton affinity of aliphatic amines, alcohols, and ethers were estimated. All the expressions have good correlations. Moreover, the Sanderson method and Bratsch method were modified on the basis of the valence electrons equilibration theory. The modified Sanderson method and modified Bratsch method are more effective than their original methods to estimate these properties.
基金financial support by the foundation of Westlake Universitysupported by the National Key Research Development Program of China(No.2017YFA0303002)。
文摘The crystal structure and physical properties of Nb_(25)Mo_(5+x)Re_(35)Ru_(25-x)Rh_(10)(0≤x≤10)and Nb_(5)Mo_(35-y)Re_(15+y)Ru_(35)Rh_(10)(0≤y≤15)high-entropy alloys(HEAs)have been studied by X-ray diffraction,electrical resistivity,magnetic susceptibility,and specific heat measurements.The results show that the former HEAs with valence electron concentration(VEC)values of 6.7-6.9 crystallize in a noncentrosymmetric cubicα-Mn structure,while the latter ones with VEC values of 7.1-7.25 adopt a centrosymmetric hexagonal close-packed(hcp)structure.Despite different structures,both series of HEAs are found to be bulk superconductors with a full energy gap,and the superconducting transition temperature Tc tends to decrease with the increase of VEC.Nevertheless,the Tc values of the hcp-type HEAs are higher than those of theα-Mn-type ones,likely due to a stronger electron phonon coupling.Furthermore,we show that VEC and electronegativity difference are two key parameters to control the stability ofα-Mn and hcp-type HEAs.These results not only are helpful for the design of such HEAs,but also represent the first realization of structurally different HEA superconductors without changing the constituent elements.
基金financially supported by the Natural Science Foundation of Liaoning Province(No.2019-MS-247)the Liaoning Revitalization Talents Program(XLYC1807178).
文摘The low valence electron concentration(VEC)Al_(x)CoCrFeNiSi(x=0.5,1.0,1.5 and 2.0)high-entropy alloys(HEAs)were designed by the fundamental properties of the constituent elements and prepared by vacuum arc melting method.The effects of Al addition on the crystal structure and microstructure were investigated.The microhardness and wear property were also researched.The results showed that the microstructure transformed from dendritic crystal to equiaxed crystal.It was found that FCC phase gradually decreased with the increasing Al content and disappeared until in a composition of 1.0 in Al_(x)CoCrFeNiSi HEAs.Little FCC phase was found with continuously adding Al,while the phase fraction of BCC increased from 85.0% to 91.8%,and VEC decreased from 7.00 to 6.14.The microhardness was increased gradually from 598 up to 909 HV with addition of Al from 0.5 to 2.0.It was the same of the compressive strength results,which improved from 1200 to 1920 MPa.The wear coefficient and mass loss were in line with mechanical properties evolution,which was attributed to the microstructure transformation into equiaxed crystal and the increase in BCC phase.
基金Funded by the Science and Technology Foundation of Retuned Students Studying Abroad of Shanxi Province of China(No. 1995-26)
文摘By measuring the hardness of carburized layer of a new type supersaturated carburizing steel (35Cr3SiMnMoV) at different temper temperature for 2 h, the relationship curve between the carburized layer hardness and the temper temperature is established. The result indicates that the hardness goes down firstly, then up and down, just like a wave consistent with the temperature increase. A secondary hardening peak appears at 570 ℃ or so. Based on Empirical Election Theory (EET) of Solids and Molecules, the valence electron structures (VESs) containing α-Fe-C, α-Fe-C-Me segregation structure units and carbide are calculated. The laws of temper process and hardness change with the temper temperature are explained, and the fact that reconstruction of θ-Fe3C is prior to that of special carbide at high tempering is analyzed with the phase structure formation factor, S, being taken into consideration. Therefore, the laws of temper process and hardness change of supersaturated carburized layer at different temper temperature can be traced back to valence electron structure (VES) level of alloy phase.
文摘The valence electron structures of Sr- and Mg-doped LaGaO3 ceramics with different compositions were calculated by Empirical Electron Theory of Solids and Molecules (EET). A criterion for the ionic conductivity was proposed, i.e. the 1/(nAnB) increases with increasing the ionic conductivity when x or y〈20% (in molar fraction).
文摘According to EET theory, the valence electron structures of RE in the solid solution of austenite, pearlite and martensite were calculated. The influence of RE in solid solution on phase transformation of pearlite and recrystallization of martensite was explained by the valence electron structure data of phases. Calculating results indicate that C element is favorite to enhance the number of RE in the solid solution. RE in the solute solution shortens the incubation period of proeutectoid ferrite, increases its quantity and carbon content, decreases the quantity of pearlite and thickness of its lamellas and lamellar spacing, then the strength and hardness of pearlite are improved and granular pearlite can be obtained. RE dissolved in martensite intensifies martensite, enhances tempering stability of martensite, increases its recrystallization temperature and prolongs the holding time needed during tempering.
基金the Natural Science Foundation of Liaoning under grant No.20022150 the National Natural Science Foundation of China under grant No.50271030.
文摘By calculating the electron structures of the phases that phosphor, sulfur and alloying elements dissolving inγ-Fe, the reason why alloying elements can bring centerline segregation in continuous casting slab (CCS) with nA, the number of electrons on the strongest covalent bonds, and the structure formation factor S were investigated, and an electron structural criterion to control and to eliminate the centerline segregation was advanced. Basing on this, the electron structures of a part of rare earth phosphides and sulfides are calculated, the physical mechanism that rare earth elements can control the segregation of phosphor and sulfur is analyzed, and the criterion is well verified.
基金Project supported by the National Natural Science Foundation of China (Grant No. 59561001)the Foundation of Guangxi Education Committee
文摘Positron lifetime measurements have been performed in binary Fe3Al and Fe3Al doping with Nb or Si alloys. The densities of valence electrons of the bulk and microdefects in all tested samples have been calculated by using the positron lifetime parameters. Density of valence electron is low in the bulk of Fe3Al alloy. It indicates that, the 3d electrons in a Fe atom have strong-localized properties and tend to form covalent bonds with Al atoms, and the bonding nature in Fe3Al is a mixture of metallic and covalent bonds. The density of valence electron is very low in the defects of Fe3Al grain boundary, which makes the bonding cohesion in grain boundary quite weak. The addition of Si to Fe3Al gives rise to the decrease of the densities of valence electrons in the bulk and the grain boundary thus the metallic bonding cohesion. This makes the alloy more brittle. The addition of Nb to Fe3Al results in the decrease of the ordering energy of the alloy and increases the density of valence electron and the bonding cohesion of the grain boundary. However, since the radius of Nb atom is larger than that of Fe atom, when Nb atoms substitute for Fe atoms, they will distort the lattice and enlarge the volume of the lattice, which decreases the density of valence electron and the cohesion of metallic bond in the bulk of the alloy.
基金Project supported by the National Natural Science Foundation of China.
文摘Based on the empirical electron theory of solids and molecules of S. H. Yu, this paper proposes (i) the calculating model of valence electron structures in L_2~'-type substitutional and interstitial complex solid solutions; (ii) the bond length difference analysis (BLD) method of unknown bond length structure solid solutions; (iii) the treatment of uncertainty of BLD analysis solution.
基金Supported by the National Natural Science Foundation of China (Grant No. 10702060)the Ministry of Science and Technology of China (2005CB724400 and 2005CB724404)
文摘The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent,metallic and ionic characters. For a quantitative analysis of the relative strength of these components,their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN,which coincides to that de-duced from the first-principles method.
基金Project supported by the National Natural Science Foundation of China (20671067, 30470150)
文摘Chloroplasts were isolated from spinach treated with taCl3, CeCl3, and NdCl3. Because of owning 4f electron characteristics and alternation valence, Ce treatment presented the highest enhancement in light absorption, energy transfer from LHC Ⅱ to PS Ⅱ, excitation energy distribution from PS Ⅰ to PS Ⅱ, and fluorescence quantum yield around 680 nm. Compared with Ce treatment, Nd treatment resulted in relatively lower enhancement in these physiological indices, as Nd did not have alternation valence. La treatment presented the lowest enhancement, as La did not have either 4f electron or alternation valence. The increase in activities of whole chain electron transport, PS ⅡDCPIP photoreduction, and oxygen evolution of chloroplasts was of the following order: Ce〉Nd 〉La〉 control. However, the photoreduction activities of spinach PS I almost did not change with La, Ce, or Nd treatments. The results suggested that 4f electron characteristics and alternation valence of rare earths had a close relationship with photosynthesis improvement.
文摘To harvest the sun light and to promote the amount of energy stored,a new binary compound which links a sensitizer(electron donor), anthracene,and substrate(electron acceptor),norbornadiene,in a non- conjugated manner without increase in molecular weight was synthesized.The inter-and intramolecular photosensitized isomerization and the mechanism were studied.
基金supported by the Distinguished Young Scholars of China(No.52025014)Natural Science Foundation of Zhejiang Province(No.LQ23E010002)Innovation 2025 Major Project of Ningbo(Nos.2022Z011 and 2023Z022).
文摘The recently established theory has built clear connections between hardness and toughness and electron structure involving both valence electron concentration(VEC)and core electron count(CEC)in transition metal nitride(TMN)ceramics.However,the underlying deformation mechanisms remain unclear.Herein,we conduct in-depth analysis on microstructure evolution during deformation of the high VEC-CEC solution TiMoN coatings having desired combination of high hardness and toughness.The effects of solid solution,preferred orientation linked with symbiotic compressive stress,grain size and dislocations are systematically discussed.We discover that numerous dislocations have been implanted into the nanocrystals of the TiMoN coating during the high-ionization arc deposition.Using two-beam bright-field imaging,we count the dislocation density and confirm occurrence of dislocation multiplication to form effective plastic deformation,which contributes to significant strain hardening,comparable to solid solution hardening,fine-grain hardening and compressive stress hardening.The improved dislocation activities also play a crucial role in enhancing the toughness by providing extra energy dissipation paths.This work gains new insights into the origins of mechanical properties of ceramic coatings and possibility to tune them via defects.
基金Project(20050003042) supported by Research Fund for the Doctoral Program of Higher Education of China
文摘The differences of grain-refining effect between Sc and Ti additions in aluminum,which cannot be substantially explained by traditional theories,were carefully studied.The empirical electron theory(EET) of solids and molecules was employed to calculate the valence electron structures(VES) of Al3Ti and Al3Sc.The conclusions can be drawn that,in the two alloys Al-Ti and Al-Sc,the different valence electron structures of Al3Ti and Al3Sc and the consequent differences of growth habit of the two particles,and the different interfacial electron density between particles and matrix fundamentally lead to the differences of grain-refining effect between Sc and Ti additions on aluminum and make Sr the better grain-refiner of aluminum.
基金Project(2014CFB801)supported by Natural Science Foundation of Hubei Province of ChinaProject(11304236)supported by the National Natural Science Foundation of China
文摘Based on the empirical electronic theory of solids and molecules (EET), the actual model for unit cell of cementite (0-FeaC) was built and the valence electron structures (VES) of cementite with specified site and a number of Fe atoms substituted by alloying atoms of M ( M=Cr, V, W, Mo, Mn ) were computed by statistical method. By defining P as the stability factor, the stability of alloyed cementite with different numbers and sites of Fe atoms substituted by M was calculated. Calculation results show that the density of lattice electrons, the symmetry of distribution of covalent electron pairs and bond energy have huge influence on the stability of alloyed cementite. It is more stable as M substitutes for FeE than for Fe1. The alloyed cementite is the most stable when Cr, Mo, W and V substitute for 2 atoms of Fe2 at the sites of Nos. 2 and 3 (or No. 6 and No. 7). The stability of alloyed cementite decreases gradually as being substitutional doped by W, Cr, V, Mo and Mn.
基金supported by the National Natural Science Foundation of China(Grant No.1 1274110)
文摘The Eu-doped Cu(In, Eu)Te2 semiconductors with chalcopyrite structures are promising materials for their applications in the absorption layer for thin-film solar cells due to their wider band-gaps and better optical properties than those of CuInTe2. In this paper, the Eu-doped CuInTe2 (CuIn1-xEuxTe2, x = 0, 0.1, 0.2, 0.3) are studied systemically based on the empirical electron theory (EET). The studies cover crystal structures, bonding regularities, cohesive energies, energy levels, and valence electron structures. The theoretical values fit the experimental results very well. The physical mechanism of a broadened band-gap induced by Eu doping into CuInTe2 is the transitions between different hybridization energy levels induced by electron hopping between s and d orbitals and the transformations from the lattice electrons to valence electrons for Cu and In ions. The research results reveal that the photovoltaic effect induces the increase of lattice electrons of In and causes the electric resistivity to decrease. The Eu doping into CuInTe2 mainly influences the transition between different hybridization energy levels for Cu atoms, which shows that the 3d electron numbers of Cu atoms change before and after Eu doping. In single phase CuIn1-xEuxTe2, the number of valence electrons changes regularly with increasing Eu content, and the calculated band gap Eg also increases, which implies that the optical properties of Eu-doped CuIn1-xEuxTe2 are improved.
文摘The valence electron structure of alloying austenite of 3C-15Cr high chromium white cast iron with different Mn contents from 1% to 6% is analyzed by BLD method and EET. Results show that the addition of Mn has major influence on the valence electron structure of the alloying austenite, especially on that of Fe-C, Fe-C-Cr and Fe-C-Cr-Mn unit cells of it. The effect becomes weak when Mn content is over 4%. Based on the effect of n~, F~~, the weighting of each unit cell and the degree of undercooling on phase transition of the aus- tenite, we can calculate the retained austenite content of as-cast structure of the high chromium white cast iron. The calculation results coincide well with those of the experiment. The phase transition characters of the austenite in high chromium white cast iron can be forecasted through valence electron structure analysis of alloying austenite by BLD method and EET on the basis of Fe-C-Cr equilibrium phase diagram.
基金supported by National Natural Science Foundation of China(51072096)National Basic Research Program of China(2010CB732304)National High-Tech Research and Development Program of China(2013AA065302)
文摘MnO and CeO2 powders were mechanically mixed by a spatula and by milling to obtain loose-contact and tight-contact mixed oxides,respectively.The monoxides and their physical mixtures were characterized by X-ray diffraction(XRD),Brunauer-Emmett-Teller(BET),X-ray photoelectron spectroscopy(XPS),Raman,O2 temperature-programmed desorption(O2-TPD),H2 temperature-programmed reduction(H2-TPR) and NO temperature-programmed oxidation(NO-TPO).The MnOx-CeO2 solid solutions did not form without any calcination process.The oxidation state of manganese tended to increase while the ionic valence of cerium decreased in the mixed oxides,accompanied with the formation of oxygen vacancies.This long-ranged electronic interaction occured more significantly in the tight-contact mixture of MnO and CeO2.The formation of more Mn4+and oxygen vacancies promoted the catalytic oxidation of NO in an oxygen-rich atmosphere.