期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Novel open-framework chalcogenide photocatalysts:Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution
1
作者 Haiyan Yin Abdusalam Ablez +4 位作者 Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang 《Chinese Journal of Structural Chemistry》 2025年第4期44-55,共12页
Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as high... Negatively charged open-framework metal sulfides(NOSs),taking advantages of the characteristics of excellent visible light absorption,easily exchanged cations,and abundant active sites,hold significant promise as highly efficient photocatalysts for hydrogen evolution.However,their applications in photocatalytic hydrogen evolution(PHE)are infrequently documented and the corresponding photocatalytic mechanism has not yet been explored.Herein,we excavated a novel NOS photocatalyst of(Me_(2)NH_(2))_(6)In_(10)S_(18)(MIS)with a three-dimensional(3D)structure,and successfully incorporated divalent Co(Ⅱ)and metal Co(0)into its cavities via the convenient cation exchange-assisted approach to regulate the critical steps of photocatalytic reactions.As the introduced Co(0)allows for more efficient light utilization and adroitly surficial hydrogen desorption,and meanwhile acts as the‘electron pump’for rapid charge transfer,Co(0)-modified MIS delivers a surprising PHE activity in the initial stage of photocatalysis.With the prolonging of illumination,metal Co(0)gradually escapes from MIS framework,resulting in the decline of PHE performance.By stark contrast,the incorporated Co(Ⅱ)can establish a strong interaction with MIS framework,and simultaneously capture photogenerated electrons from MIS to produce Co(0),which constructs a stable photocatalytic system as well as provides additional channels for spatially separating photogenerated carriers.Thus,Co(Ⅱ)-modified MIS exhibits a robust and highly stable PHE activity of~4944μmol/g/h during the long-term photocatalytic reactions,surpassing most of the previously reported In–S framework photocatalysts.This work represents a breakthrough in the study of PHE performance and mechanism of NOS-based photocatalysts,and sheds light on the design of vip confined NOS-based photocatalysts towards high-efficiency solar-to-chemical energy conversion. 展开更多
关键词 OPEN-FRAMEWORK Metal sulfide Ion exchange Cobalt cocatalyst valence state Charge transfer Photocatalytic hydrogen evolution
原文传递
Morphology and valence state evolution of Cu:Unraveling the impact on nitric oxide electroreduction 被引量:2
2
作者 Ting Sun Fengyu Gao +4 位作者 Ya Wang Honghong Yi Qingjun Yu Shunzheng Zhao Xiaolong Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期276-286,共11页
Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption... Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance. 展开更多
关键词 NORR Ammonia Synthesis COPPER MORPHOLOGY valence states Mechanism
在线阅读 下载PDF
High valence state of Ni and Mo synergism in NiS_(2);MoS_(2)hetero-nanorods catalyst with layered surface structure for urea electrocatalysis 被引量:4
3
作者 Shuli Wang Linyu Zhao +3 位作者 Jiaxin Li Xinlong Tian Xiang Wu Ligang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期483-492,I0013,共11页
High valence state species are significant in the energy-relevant electrochemical oxidation reactions.Herein,the high active state of Ni^(3+)formation induced by Mo^(6+)and their efficient synergism in NiS_(2)-MoS_(2)... High valence state species are significant in the energy-relevant electrochemical oxidation reactions.Herein,the high active state of Ni^(3+)formation induced by Mo^(6+)and their efficient synergism in NiS_(2)-MoS_(2)hetero-nanorods powder catalyst with the rough layered structure are demonstrated,as proof of concept,for the urea-assisted water electrolysis.This catalyst can be derived from the sulfidation of NiMoO_(4) nanorods that can realize individual metal sulfides sufficiently mixing at a domain size in the nanoscale which creates lots of active sites and nanointerfaces.The high valence state of Mo^(6+)and Ni^(3+)formation and increased conductive phase of 1 T MoS_(2)in the hetero-nanorods compared to the counterpart pure phases are revealed by spectral study and microscopic analysis;high electrochemical surface area and active site exposure are found due to the nano-interface formation and layered rough nanosheets over the surface of nanorods.They show much higher catalytic performance than their pure phases for urea oxidation,including high catalytic activity,stability,charge transfer ability and catalytic kinetics resulting from more active Ni^(3+)species formation and electronic synergism of high valence metals.Transformation of 1 T MoS_(2)to Mo^(6+)and increased amount of Mo^(6+)and Ni^(3+)after stability test indicate their involvement and synergism for the catalysis reaction.The current work offers a novel understanding of the synergistic effect based on the high valence state synergism for heterogeneous catalysts in electrocatalysis. 展开更多
关键词 Hetero-nanorods High valence state Urea oxidation NiS_(2) MoS_(2)
在线阅读 下载PDF
Effect of the Structure and Valence State on the Properties of VO_2 Thin Films 被引量:1
4
作者 LUYong LINLi-bin 《Semiconductor Photonics and Technology》 CAS 2001年第2期98-103,共6页
VO 2 thin films with good switching properties were prepared by controlling the annealing time and the annealing temperature in a vacuum system. The structural, optical and electrical properties of the samples were ch... VO 2 thin films with good switching properties were prepared by controlling the annealing time and the annealing temperature in a vacuum system. The structural, optical and electrical properties of the samples were characterized by using XRD、XPS、UV-VIS and electrical measurements. The switching parameters of VO 2 thin film were investigated too. The results indicate that before and after phase transition the resistance of VO 2 thin films changes about three orders of magnitude, the variation of film transmittance of 40 % has been carried out with the absorptivity switching velocity of about 0.260 7 /min at 900 nm . The structural property of samples has been improved but the phase-transition properties have been decreased by increasing the annealing time and annealing temperature. The valence of V ions and the structure of samples have great effect on phase transition properties of VO 2 thin films. Discussion on the effects of annealing time and annealing temperature on the phase-transition temperature and hysteresis width shows that the best reasonable annealing time and annealing temperature can be achieved. 展开更多
关键词 VO 2 thin film Phase transition Film structure valence state
在线阅读 下载PDF
Crystal Chemistry of Iron in Non-Metamict Chevkinite-(Ce): Valence State and Site Occupation Proportions
5
作者 杨主明 李禾 +1 位作者 刘密兰 Franz Pertlik 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第2期238-242,共5页
The ideal formula for chevkinite can be expressed as A4BC2D2Si4O22. It is important to determine the valence state and site occupation proportions for Fe among the B, C, and D octahedral sites as it may help to identi... The ideal formula for chevkinite can be expressed as A4BC2D2Si4O22. It is important to determine the valence state and site occupation proportions for Fe among the B, C, and D octahedral sites as it may help to identify different species in the chevkinite group. Non-metamict chevkinite-(Ce) from Mianxi alkali feldspar-granite, Sichuan Province, China, was investigated using Moessbauer spectroscopy. The Fe^3+/∑Fe ratio was 39.2%. A significant increase of Fe^3+ occured during metamictization and annealing for chevkinite-group minerals. In metamict samples Fe tended to lower coordination, According to the correlation between bond length and isomer shift (IS), the quadrupole doublets with IS = 1.10 and 0.94 mm·s^-1 can be assigned to Fe^2+ in the B and C octahedral sites, respectively. Based on the correlation between octahedral distortion and quadrupole splitting (QS), the quadrupole doublets with QS = 0.86 and 0.77 mm·s^-1 can be assigned to Fe^3+ in the C and D sites, respectively. The simplified formula can be revised as: Ce4Fe^2+ (Ti, Fe^2+, Fe^3+ )2(Ti, Fe^3+ )2Si4(O,OH)22. It indicated that the non-metamict chevkinite-(Ce) belonged to Fe^2+ end member of the chevkinite group because Fe^2+ was the predominant component in the B site. 展开更多
关键词 Chevkinite- (Ce) Moessbauer spectroscopy valence state bond length rare earths
在线阅读 下载PDF
VALENCE STATE OF C AtOMS AND σ_t-η_n SEPARABILITY OF MOLECULAR ORBITALS IN THE (BUCKMINSTER)FULLERENE C_(50)
6
作者 Ji Min YAN Xue Qi YI 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第11期883-886,共4页
The valence state of C atoms and the structure of molecular orbitals of the (Buckminster)Fullerene C_(60)have been demonstrated. It has been shown that when a motion-coordinate system is adopted, in which the coordina... The valence state of C atoms and the structure of molecular orbitals of the (Buckminster)Fullerene C_(60)have been demonstrated. It has been shown that when a motion-coordinate system is adopted, in which the coordinate origin is at every C atom, the z axis is in the direction of the normal and the (x,y) axes are in the direction of tangents of C_(60)'s spherical surface, 240 valence atomic orbitals of C_(60) can be divided into two groups. All (P_x, P_y)atomic orbitals named as Pt ones and all the other P_z atomic orbitals named as p. ones, That is to say that if we name the molecular orbital linearly combined of P_t atomic orbitals as σ_t and the molecular orbital linearly combined of P_n atomic orbitals as π_n, the 240 valence molecular orbitals are of the property of σ_t-π_n separability. It has also been shown that the frontier and nearby frontier molecular orbitals are π_n ones, and therefore the essential physical and chemical properties of C_(60) are determined by its π_n molecular orbitals. 展开更多
关键词 BUCKMINSTER)FULLERENE C valence state OF C AtOMS AND n SEPARABILITY OF MOLECULAR ORBITALS IN THE
在线阅读 下载PDF
ON THE VALENCE STATE OF COPPER IN HIGH T_c SUPERCONDUCTOR YBa_2Cu_3O_x
7
作者 Song Zengfu Wang Jiafu Lei Zimin Wu Jinguang Xu Guangxian(Department of Chemistry,Department of Physics,Peking University,Beijing 100871,P.R.China) 《Journal of Rare Earths》 SCIE EI CAS CSCD 1990年第1期26-30,共5页
Various optical luminescence spectroscopic techniques were used to characterize the high T_c superconductor YBa_2Cu_3O_x.The emission bands reveal that Cu^(3+) coexist with Cu^(2+) and Cu^+ in this material.
关键词 YBCO ON THE valence state OF COPPER IN HIGH Tc SUPERCONDUCTOR YBa2Cu3Ox Cu
在线阅读 下载PDF
Valence state effect of Cu on photocatalytic CO_(2)reduction
8
作者 Fangxu Dai Mingming Zhang +2 位作者 Zhenjiang Li Jun Xing Lei Wang 《Materials Reports(Energy)》 EI 2023年第4期39-45,共7页
Copper(Cu)is extensively employed in photocatalytic CO_(2)reduction reactions for the production of high-value products.The valence state of transition metals plays a pivotal role in influencing the catalytic process.... Copper(Cu)is extensively employed in photocatalytic CO_(2)reduction reactions for the production of high-value products.The valence state of transition metals plays a pivotal role in influencing the catalytic process.However,due to the complex valence state changes of Cu in the CO_(2)reduction reaction,research on its valence state effect is lacking.The current work is to prepare a series of TiO_(2)/CuX with stable Cu valence composition using different copper halides(CuX and CuX_(2),X=Br or Cl)as precursors.The results show that the CuBr_(2)loading leads to Cu^(+)/Cu^(2+) mixed cocatalyst and exhibits the highest activity for CO_(2)photoreduction.The CH4 evolution rate of the TiO_(2)/CuBr_(2)catalyst is as high as 100.59μmol h^(-1)g^(-1),which is 6.6 times that of pristine TiO_(2).The CH4 selectivity reaches 77%.The enhanced catalytic activity and selectivity can be ascribed to the efficient surface adsorption,activation,excellent carrier separation,and transfer ofCu^(+)/Cu^(2+) mixed cocatalyst.Our findings provide a reference for designing highly active Cu-based photocatalysts. 展开更多
关键词 valence state CU PHOTOCATALYTIC CO_(2)reduction
在线阅读 下载PDF
Two-Photon Excited State Dynamics of Dark Rydberg and Bright Valence States in Furan
9
作者 Jin-You Long Chun-Long Hu Bing Zhang 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第4期26-29,共4页
Two-photon absorption in systems with parity permits access to states that cannot be directly prepared by one-photon absorption. Here we investigate ultrafast internal conversion (IC) dynamics of furan by using this... Two-photon absorption in systems with parity permits access to states that cannot be directly prepared by one-photon absorption. Here we investigate ultrafast internal conversion (IC) dynamics of furan by using this strategy in combination with femtosecond time-resolved photoelectron imaging. The dark Rydberg S1 and bright valence S2 states are simultaneously excited by two photons of 405 nm, and then ionized by two photons of 800nm. The IC from S2 to S1 is clearly observed and extracted from the time dependence of the higher photoelectron kinetic energy (PKE) component. More importantly, the internal conversions to hot So from directly-prepared S1 and secondarily-populated S1 are unambiguously identified by the time-dependence of the lower PKE component. The average lifetime of the S2 and S1 states is measured to be 29 fs. The internal conversions of S2 to S1, S1 to hot So occur on estimated timescales of 15.4 fs and 38 fs, respectively. 展开更多
关键词 SI Two-Photon Excited state Dynamics of Dark Rydberg and Bright valence states in Furan
原文传递
Metal valence state-regulated Li bond chemistry for efficient lithium-sulfur battery catalysis:A case study of cupric and cuprous oxides
10
作者 Hao-Bo Zhang Bo-Bo Zou +4 位作者 Xian Zhong Xin-He Liu Kai-Xi You Xinyan Liu Hong-Jie Peng 《Particuology》 2025年第5期95-102,共8页
Valence state is identified as a key property of transition metal-based catalysts in conventional het-erogeneous catalysis research.For a specific monometal element,however,the regulatory role of valence state has sel... Valence state is identified as a key property of transition metal-based catalysts in conventional het-erogeneous catalysis research.For a specific monometal element,however,the regulatory role of valence state has seldom explored in emerging energy catalytic applications such as rechargeable lithium-sulfur batteries suffering from sluggish sulfur cathode conversion kinetics.In this study,two monometal oxides with distinct valence states,cupric oxide(CuO)and cuprous oxide(Cu_(2)O),were investigated,revealing valence-state-dependent interactions between oxides and sulfur species,as well as the modulated sulfur reduction reaction(SRR)kinetics.In addition to the inherent Cu^(2+)-enabled surface(poly)thiosulfate redox,divalent Cu^(2+)and monovalent Cu^(+)were found to steer the oxygen reactivity and so indirectly tune the lithium bond strength that dictates the surface chemisorption of lithium(poly)sulfides.The stronger interactions between CuO and sulfur species promoted SRR conversion kinetics,enabling enhanced lithium-sulfur battery performance under kinetically demanding conditions such as high-rate capability at 2 C with a moderate sulfur loading of 1.3 mg cm^(-2) and cycling stability for over 110 cycles at a high sulfur loading of 4.8 mg cm^(-2).This work is expected to expand the scope of metal-valence-state effect on heterogeneous catalysis and offer an unconventional"indirect"way to regulate lithium-bond chemistry for battery research. 展开更多
关键词 Lithium-sulfur battery OXIDE valence state Sulfur reduction reactions Lithium bond chemistry
原文传递
Multiple valence states of Fe boosting SERS activity of Fe_(3)O_(4) nanoparticles and enabling effective SERS-MRI bimodal cancer imaging 被引量:1
11
作者 Jie Lin Xuehua Ma +10 位作者 Anran Li Ozioma Udochukwu Akakuru Chunshu Pan Meng He Chenyang Yao Wenzhi Ren Yanying Li Dinghu Zhang Yi Cao Tianxiang Chen Aiguo Wu 《Fundamental Research》 CAS CSCD 2024年第4期858-867,共10页
Developing novel nanoparticle-based bioprobes utilized in clinical settings with imaging resolutions ranging from cell to tissue levels is a major challenge for tumor diagnosis and treatment.Herein,an optimized strate... Developing novel nanoparticle-based bioprobes utilized in clinical settings with imaging resolutions ranging from cell to tissue levels is a major challenge for tumor diagnosis and treatment.Herein,an optimized strategy for designing a Fe_(3)O_(4)-based bioprobe for dual-modal cancer imaging based on surface-enhanced Raman scattering(SERS)and magnetic resonance imaging(MRI)is introduced.Excellent SERS activity of ultrasmall Fe_(3)O_(4) nanoparticles(NPs)was discovered,and a 5×10^(-9)M limit of detection for crystal violet molecules was successfully obtained.The high-efficiency interfacial photon-induced charge transfer in Fe_(3)O_(4) NPs was promoted by multiple electronic energy levels ascribed to the multiple valence states of Fe,which was observed using ultraviolet-visible diffuse reflectance spectroscopy.Density functional theory calculations were utilized to reveal that the narrow band gap and high electron density of states of ultrasmall Fe_(3)O_(4) NPs significantly boosted the vibronic coupling resonances in the SERS system upon illumination.The subtypes of cancer cells were accurately recognized via high-resolution SERS imaging in vitro using the prepared Feg Og-based bioprobe with high sensitivity and good specificity.Notably,Fe_(3)O_(4)-based bioprobes simultaneously exhibited T,-weighted MRI contrast enhancement with an active targeting capability for tumors in vivo.To the best of our knowledge,this is the first report on the use of pure semiconductor-based SERS-MRI dual-modal nanoprobes in tumor imaging in vivo and in vitro,which has been previously realized only using semiconductor-metal complex materials.The non-metallic materials with SERS-MRI dual-modal imaging established in this report are a promising cancer diagnostic platform,which not only showed excellent performance in early tumor diagnosis but also possesses great potential for image-guided tumor treatment. 展开更多
关键词 Fe_(3)O_(4)NPs SERS-MRI dual-modal nanoprobes PICT Multiple valence states Cancer diagnosis
原文传递
Z-scheme heterojunction Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)for enhanced visible-light photocatalytic N2 fixation via synergistic heterovalent vanadium states and oxygen vacancy defects
12
作者 Pengkun Zhang Qinhan Wu +7 位作者 Haoyu Wang Dong-Hau Kuo Yujie Lai Dongfang Lu Jiqing Li Jinguo Lin Zhanhui Yuan Xiaoyun Chen 《Chinese Journal of Catalysis》 2025年第7期279-293,共15页
Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ ... Herein,we established a Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2)/V-Zn(O,S)Z-scheme heterojunction labeled ZnVO/V-Zn(O,S)with a heterovalent V^(4+)/V^(5+)states and oxygen vacancies in both phases via a one-step in-situ hydrolysis method.The NaBH_(4) regulated the ZnVO/V-Zn(O,S)-3 with rich Vo and suitable n(V^(4+))/n(V^(5+))ratio achieved an excellent photocatalytic nitrogen fixation activity of 301.7μmol/(g×h)and apparent quantum efficiency of 1.148%at 420 nm without any sacrificial agent,which is 11 times than that of V-Zn(O,S).The Vo acts as the active site to trap and activate N_(2) molecules and to trap and activate H_(2)O to produce the H for N_(2) molecules photocatalytic reduction.The rich Vo defects can also reduce the competitive adsorption of H_(2)O and N_(2) molecules on the surface active site of the catalyst.The heterovalent vanadium states act as the photogenerated electrons,quickly hopping between V^(4+)and V^(5+)to transfer for the photocatalytic N_(2) reduction reaction.Additionally,the Z-scheme heterojunction effectively minimizes photogenerated carrier recombination.These synergistic effects collectively boost the photocatalytic nitrogen fixation activity.This study provides a practical method for designing Z-scheme heterojunctions for efficient photocatalytic N_(2) fixation under mild conditions. 展开更多
关键词 Zn_(3)(OH)_(2)(V_(2)O_(7))(H_(2)O)_(2) Z-scheme heterojunction Heterovalent valence states Oxygen vacancy Photocatalytic N_(2)fixation
在线阅读 下载PDF
Vibration uncoupling of germanium with different valence states lowers thermal conductivity of Cs2Ge3Ga6Se14 被引量:4
13
作者 Ni Ma Lin Xiong +1 位作者 Ling Chen Li-Ming Wu 《Science China Materials》 SCIE EI CSCD 2019年第12期1788-1797,共10页
The thermal phonon transport is a key matter for heat managing in materials science which is crucial for device miniaturization and power density increase. Herein, we report the synthesis, structure and characterizati... The thermal phonon transport is a key matter for heat managing in materials science which is crucial for device miniaturization and power density increase. Herein, we report the synthesis, structure and characterization of a new compound, Cs2Ge3Ga6Se14, with a unique anisotropic structure simultaneously containing Ge^3+ and Ge^2+ that adopt(Ge1)2^3+ Se6 dimer or(Ge2)^2+Se6 octahedron, respectively. The thermal conductivity was measured to be 0.57–0.48 W m^-1 K^-1 from 323 to 773 K, the lowest value among all the known Ge-containing compounds, approaching its glass limit according to the Cahill’s formulation. More importantly, we discover for the first time that the vibration uncoupling of Ge with different valence states hinders the effective thermal energy transport between the(Ge1)2^3+ Se6 dimer and(Ge2)^2+Se6 octahedron, and consequently lowers the thermal conductivity. In addition, we propose a structure factor f = sin(180) ×d/l(i =A, B)iGe Qi, with which a structure map of the Cs2 Ge3 M6 Q14 family is given. 展开更多
关键词 Cs2Ge3Ga6Se14 mixed valence states compound thermal conductivity phonon transport crystallography analyses
原文传递
Recent research progress on mixed valence state tungsten based materials 被引量:7
14
作者 Shu Yin Yusuke Asakura 《Tungsten》 2019年第1期5-18,共14页
Synthesis and characterization of tungsten based mixed valence state nanoparticles and their novel applications are reviewed.The mixed valence state tungsten based homogeneous nanomaterials such as bronze structure M_... Synthesis and characterization of tungsten based mixed valence state nanoparticles and their novel applications are reviewed.The mixed valence state tungsten based homogeneous nanomaterials such as bronze structure M_(x)WO_(3)(M=Na^(+),K^(+),Rb^(+),Cs^(+),NH_(4)^(+),etc.)and tungsten sub-oxide W_(18)O_(49) possess excellent infrared(IR)light shielding property,implying their great potential applications on heat ray shielding and indoor energy saving effect in summer season.Also,some novel properties such as electric conductivity,bio thermal therapy function and electrochromic properties of mixed valence state tungsten based materials are introduced.The design of components,formation of composites and structure control of thin films are expected to realize the property enhancement and candidates for practice application as window materials.The multifunc-tionality of the mixed valence state based composites also implies great potential on novel applications of various building materials. 展开更多
关键词 Tungsten bronze Mixed valence state Smart window Infrared(IR)light shielding THERMOCHROMIC Photothermal ablation therapy(PTA) Multifunctionality
原文传递
Studies on exposure status of inhabitants to water-arsenic valence states in areas with endemic arsenism in the Datong basin in Shanxi
15
作者 LI Jun CHENG Xiaotian +7 位作者 WANG Zhenghui WEN Xinping HAN Lingling SANG Zhiping ZHANG Jie DUAN Hushun LIANG Binfeng GAO Jianguo 《Frontiers of Medicine》 SCIE CSCD 2007年第2期219-222,共4页
This study aimed to describe the distribution of water-arsenic(As)valence states and its relationship to areas with endemic arsenism in the Datong basin.Drinking water samples of patients with endemic arsenism and a c... This study aimed to describe the distribution of water-arsenic(As)valence states and its relationship to areas with endemic arsenism in the Datong basin.Drinking water samples of patients with endemic arsenism and a control group were examined using hydride generation atomic fluorescence spectrometry(HG-AFS).We analyzed the data using SPSS10.0 for Windows.The As(III)/As ratio was 52.1%in the water sample,exceeding the national standard of 0.05 mg/L.The As(III)/As ratio significantly varied among the different stages in the disease-state groups,and with the control group(χ^(2)=22.4,P<0.01).The As(III)/As(V)ratio significantly varied in the four groups(χ^(2)=26.19,P<0.01),with a tendency to increase along with the seriousness of the disease state.The most common type of drinking water arsenic valence state was As(III)in the endemic diseaseareas.Endemic arsenism was positively correlated with As(III).This led us to conclude that the fraction of each water-arsenic valence state should be studied when determining the arsenic content of drinking water. 展开更多
关键词 arsenic poisoning valence state endemic diseases
原文传递
Clean and tunable fabrication of ternary graphene-cobalt based promoter by chemical vapor deposition for lithium-sulfur batteries
16
作者 Hua Gao Yunfeng Zhang +6 位作者 Chaoxu Hao Bo Zhao Menglei Wang Haina Ci Lixian Song Zhongyuan Lu Yingze Song 《Journal of Energy Chemistry》 2025年第8期194-202,共9页
Graphene-metal based materials have been utilized in lithium-sulfur(Li–S)batteries owing to their integrated functionalities thus far.However,their synthesis has predominantly relied on wet-chemistry routes,which lim... Graphene-metal based materials have been utilized in lithium-sulfur(Li–S)batteries owing to their integrated functionalities thus far.However,their synthesis has predominantly relied on wet-chemistry routes,which limited their practical activity in Li–S reaction systems.In this study,we introduce a chemical vapor deposition(CVD)-triggered dry-chemistry approach for the preparation of graphene-cobalt(Co)based catalysts.The versatile CVD technique provides a dry and controllable reaction environment,effectively pledging the compact and clean catalytic interfaces between graphene and Co-based components.Additionally,programmed reactions introduce defects such as vacancies and nitrogen heteroatoms into the catalysts.Notably,the graphene layer number and Co valence state can be delicately manipulated by altering the CVD reaction temperature.Specifically,few-layer graphene wrapped Co/Co_(3)O_(4)(FGr-Co/Co_(3)O_(4))prepared at 450 ℃ shows higher catalytic activity than the multi-layer graphene wrapped Co/CoO(MGr-Co/CoO)synthesized at 550 ℃,attributed to its comprehensive control of clean interface,valence distribution range and defects.Leveraging these advantages,the battery with FGr-Co/Co_(3)O_(4)shows favorable working stability with a degradation rate of only 0.08%over 500 cycles at 1.0 C.Furthermore,under an elevated sulfur loading of 6.1 mg cm^(–2),the battery harvests a remarkable areal capacity of 5.9 mA h cm^(–2)along with stable cyclic operation. 展开更多
关键词 Lithium-sulfur battery Chemical vapor deposition Graphene wrapped Co-based promoter Graphene layer control Co valence state altering
在线阅读 下载PDF
Strategy to improve magnetic property of sintered(Nd,Ce)-Fe-B magnets:Moderate replacement of cerium with lanthanum
17
作者 Yuan Qin Weiqiang Liu +5 位作者 Yuqing Li Zhanjia Wang Hao Chen Penghao Yue Lele Zhang Ming Yue 《Journal of Rare Earths》 2025年第5期981-988,共8页
In this work,we proposed a method to enhance the magnetic properties of(Nd,Ce)-Fe-B magnets with Ce/TRE ratios below 25 wt%by introducing a moderate amount of La elements.The segregation behavior of La elements toward... In this work,we proposed a method to enhance the magnetic properties of(Nd,Ce)-Fe-B magnets with Ce/TRE ratios below 25 wt%by introducing a moderate amount of La elements.The segregation behavior of La elements towards grain boundaries(GBs)was utilized to optimize the GB phase structure.Incorporation of La atoms into the main phase induces lattice expansion,leading to an increased formation of Ce^(3+)ions with enhanced magnetic moments.Comparative analysis with the original magnet(La/Ce=0 wt%)demonstrates that the magnet with a La/Ce ratio of 10 wt%exhibits improvements of 0.3%in remanence,12.6%in coercivity,and 0.6%in maximum energy produ ct.These results underscore that the moderate addition of La elements enhances the fluidity of the rare earth-rich phase and optimizes the distribution of lamellar GB,consequently reinforcing the magnetic isolation effect.Furthermore,the promotion of the transformation from Ce^(4+)to Ce^(3+)ons contributes to the comprehensive enhancement of the magnetic properties.This research offers a novel strategy for fabricating high-performance and resource-e fficient sintered magnets based on LaCe alloys. 展开更多
关键词 (Nd Ce)-Fe-B magnet La elements Ce valence state High performance Rare earths
原文传递
Experimental study of highly excited even-parity bound states of the Sm atom 被引量:3
18
作者 秦文杰 戴长建 +1 位作者 肖颖 赵洪英 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第8期3384-3394,共11页
In this work, a three-step autoionization detection method and direct photoionization detection method are employed to measure the highly excited even-parity states of the Sm atom in the energy region between 36360 cm... In this work, a three-step autoionization detection method and direct photoionization detection method are employed to measure the highly excited even-parity states of the Sm atom in the energy region between 36360 cm^-1 and 40800 cm^-1. Comparisons between the results from the two detection techniques enable us to discriminate the Rydberg states from the valence states in the same energy region with the information of level energies, possible J values and their relative intensities. Furthermore, in the experiment two different excitation schemes are designed to obtain the spectra of highly excited even-parity states of the Sm atom. With a detailed analysis of the experimental data, this work not only confirms the results about many spectral data from the literature with different excitation schemes, but also reports new spectral data on 29 Rydberg states and 23 valence states. 展开更多
关键词 Rydberg state valence state Sm atom
原文传递
Visible-light deposition of CrO_(x) cocatalyst on TiO_(2):Cr valence regulation for superior photocatalytic CO_(2)reduction to CH_(4) 被引量:2
19
作者 Jingjing Dong Yuan Kong +7 位作者 Heng Cao Zhiyu Wang Zhirong Zhang Lidong Zhang Song Sun Chen Gao Xiaodi Zhu Jun Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期103-112,I0004,共11页
Photodeposition is widely adopted for implanting metal/metal oxide cocatalysts on semiconductors.However,it is prerequisite that the photon energy should be sufficient to excite the host semiconductor.Here,we report a... Photodeposition is widely adopted for implanting metal/metal oxide cocatalysts on semiconductors.However,it is prerequisite that the photon energy should be sufficient to excite the host semiconductor.Here,we report a lower-energy irradiation powered deposition strategy for implanting CrO_(x) cocatalyst on TiO_(2).Excitingly,CrO_(x)-400 implanted under visible-light irradiation significantly promotes the CH4 evolution rate on TiO_(2)to 8.4μmolg·^(-1)h^(-1) with selectivity of98%from photocatalytic CO_(2)reduction,which is 15 times of that on CrO_(x)-200 implanted under UV-visible-light irradiation.Moreover,CrO_(x)-400 is identified to be composed of higher valence Cr species compared to CrO_(x)-200.This valence states regulation of Cr species is indicated to provide more active sites for CO_(2) adsorption/activation and to modulate the reaction mechanism from single Cr site to Cr-Cr dual sites,thus endowing the superior CH_(4)production.This work demonstrates an alternative strategy for constructing efficient metal oxides cocatalysts on wide bandgap semiconductor. 展开更多
关键词 valence states regulation CrO_(x)cocatalyst Lower-energy irradiation Photocatalytic CO_(2)reduction High CH_(4)selectivity
在线阅读 下载PDF
Precisely quantifying bulk transition metal valence evolution in conventional battery electrode by inverse partial fluorescence yield 被引量:1
20
作者 Kehua Dai Weiwei Shao +7 位作者 Beibei Zhao Wenjuan Zhang Yan Feng Wenfeng Mao Guo Ai Gao Liu Jing Mao Wanli Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期363-368,I0010,共7页
Precisely quantifying transition metal(TM) redox in bulk is a key to understand the fundamental of optimizing cathode materials in secondary batteries. At present, the commonly used methods to probe TM redox are hard ... Precisely quantifying transition metal(TM) redox in bulk is a key to understand the fundamental of optimizing cathode materials in secondary batteries. At present, the commonly used methods to probe TM redox are hard X-ray absorption spectroscopy(hXAS) and soft X-ray absorption spectroscopy(sXAS).However, they are both facing challenges to precisely quantify the valence states of some transition metals such as Mn. In this paper, Mn-L iPFY(inverse partial fluorescence yield) spectra extracted from Mn-L m RIXS(mapping of resonant inelastic X-ray scattering) is adopted to quantify Mn valence states. Mn-L i PFY spectra has been considered as a bulk-sensitive, non-distorted probe of TM valence states.However, the exact precision of this method is still unclear in quantifying practical battery electrodes.Herein, a series of LiMn_(2)O_(4) electrodes with different charge and discharge states are prepared. Based on their electrochemical capacity(generally considered to be very precise), the precision of Mn iPFY in quantifying bulk Mn valence state is confirmed, and the error range is unraveled. Mn-L mRIXS iPFY thus is identified as one of the best methods to quantify the bulk Mn valence state comparing with hXAS and sXAS. 展开更多
关键词 Cathode materials valence state of transition metals Lithium-ion batteries Mapping of resonant inelastic X-ray scattering Inverse partial fluorescence yield
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部