期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Thermionic electron emission in the 1D edge-to-edge limit
1
作者 Tongyao Zhang Hanwen Wang +2 位作者 Xiuxin Xia Chengbing Qin Xiaoxi Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期733-737,共5页
Thermionic emission is a tunneling phenomenon,which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot eno... Thermionic emission is a tunneling phenomenon,which depicts that electrons on the surface of a conductor can be pulled out into the vacuum when they are subjected to high electrical tensions while being heated hot enough to overtake their work functions.This principle has led to the great success of the so-called vacuum tubes in the early 20 th century.To date,major challenges still remain in the miniaturization of a vacuum channel transistor for on-chip integration in modern solid-state integrated circuits.Here,by introducing nano-sized vacuum gaps(~200 nm)in a van der Waals heterostructure,we successfully fabricated a one-dimensional(1 D)edge-to-edge thermionic emission vacuum tube using graphene as the filament.With the increasing collector voltage,the emitted current exhibits a typical rectifying behavior,with the maximum emission current reaching 200 p A and an ON-OFF ratio of 10;.In addition,it is found that the maximum emission current is proportional to the number of the layers of graphene.Our results expand the research of nano-sized vacuum tubes to an unexplored physical limit of 1 D edge-to-edge emission,and hold great promise for future nano-electronic systems based on it. 展开更多
关键词 vacuum microelectronics thermionic emission GRAPHENE electronic transport in nanoscale materials and structures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部