本文介绍算法交易中的一个重要指标——成交量加权平均价格(volume-weighted average price,VWAP).VWAP是一种广泛应用于日内交易的基准价格,不仅为交易者提供了一个衡量执行价格是否优于市场平均水平的标准,还在优化交易策略、减少市...本文介绍算法交易中的一个重要指标——成交量加权平均价格(volume-weighted average price,VWAP).VWAP是一种广泛应用于日内交易的基准价格,不仅为交易者提供了一个衡量执行价格是否优于市场平均水平的标准,还在优化交易策略、减少市场冲击和管理风险等方面发挥着至关重要的作用.首先介绍了VWAP的一些数学建模方法,然后提出利用强化学习等算法来优化VWAP策略,并展示了在模拟市场环境中的实验结果.展开更多
This paper proposes a dynamic model to forecast intraday volume percentages by decomposing the trade volume into two parts: The average part as the intraday volume pattern and the residual term as the abnormal changes...This paper proposes a dynamic model to forecast intraday volume percentages by decomposing the trade volume into two parts: The average part as the intraday volume pattern and the residual term as the abnormal changes. An empirical test on data spanning half-a-year gold futures and S&P 500 futures reveals that a rolling average of the previous days' volume percentages shows great predictive ability for the average part. An SVM approach with the input pattern consisting of two categories is employed to forecast the residual term. One is the previous days' volume percentages in the same time interval and the other is the most recent volume percentages. The study shows that this dynamic SVM-based forecasting approach outperforms the other commonly used statistical methods and enhances the tracking performance of a VWAP strategy greatly.展开更多
本文在辨析3种典型日内交易量预测模型—加和模型、乘积模型和分解优化模型—的理论差异并使用中国市场数据实证检验的基础上,提出一种新的日内交易量预测模型:局部波动模型.在交易量预测和成交量加权平均价(volume weighted average pr...本文在辨析3种典型日内交易量预测模型—加和模型、乘积模型和分解优化模型—的理论差异并使用中国市场数据实证检验的基础上,提出一种新的日内交易量预测模型:局部波动模型.在交易量预测和成交量加权平均价(volume weighted average price,VWAP)策略层面,局部波动模型的稳定性均优于经典的基准方法—历史滚动均值.该模型运算速度快且可实现动态预测,预测精度方面表现良好,仅不及精度最高但速度最慢的乘积模型,且其稳健性优于乘积模型,介于乘积模型和分解优化模型之间.该模型在大盘风格数据上表现较好,且在处理频率较高的数据以及交易量波动较低的数据上具有优势.展开更多
文摘本文介绍算法交易中的一个重要指标——成交量加权平均价格(volume-weighted average price,VWAP).VWAP是一种广泛应用于日内交易的基准价格,不仅为交易者提供了一个衡量执行价格是否优于市场平均水平的标准,还在优化交易策略、减少市场冲击和管理风险等方面发挥着至关重要的作用.首先介绍了VWAP的一些数学建模方法,然后提出利用强化学习等算法来优化VWAP策略,并展示了在模拟市场环境中的实验结果.
文摘This paper proposes a dynamic model to forecast intraday volume percentages by decomposing the trade volume into two parts: The average part as the intraday volume pattern and the residual term as the abnormal changes. An empirical test on data spanning half-a-year gold futures and S&P 500 futures reveals that a rolling average of the previous days' volume percentages shows great predictive ability for the average part. An SVM approach with the input pattern consisting of two categories is employed to forecast the residual term. One is the previous days' volume percentages in the same time interval and the other is the most recent volume percentages. The study shows that this dynamic SVM-based forecasting approach outperforms the other commonly used statistical methods and enhances the tracking performance of a VWAP strategy greatly.
文摘本文在辨析3种典型日内交易量预测模型—加和模型、乘积模型和分解优化模型—的理论差异并使用中国市场数据实证检验的基础上,提出一种新的日内交易量预测模型:局部波动模型.在交易量预测和成交量加权平均价(volume weighted average price,VWAP)策略层面,局部波动模型的稳定性均优于经典的基准方法—历史滚动均值.该模型运算速度快且可实现动态预测,预测精度方面表现良好,仅不及精度最高但速度最慢的乘积模型,且其稳健性优于乘积模型,介于乘积模型和分解优化模型之间.该模型在大盘风格数据上表现较好,且在处理频率较高的数据以及交易量波动较低的数据上具有优势.