期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Two-step growth of VSe_2 films and their photoelectric properties
1
作者 Yu Zeng Shengli Zhang +6 位作者 Xiuling Li Jianping Ao Yun Sun Wei Liu Fangfang Liu Peng Gao Yi Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期343-349,共7页
We put forward a two-step route to synthesize vanadium diselenide(VSe_2), a typical transition metal dichalcogenide(TMD). To obtain the VSe_2 film, we first prepare a vanadium film by electron beam evaporation and we ... We put forward a two-step route to synthesize vanadium diselenide(VSe_2), a typical transition metal dichalcogenide(TMD). To obtain the VSe_2 film, we first prepare a vanadium film by electron beam evaporation and we then perform selenization in a vacuum chamber. This method has the advantages of low temperature, is less time-consuming, has a large area, and has a stable performance. At 400?C selenization temperature, we successfully prepare VSe_2 films on both glass and Mo substrates. The prepared VSe_2 has the characteristic of preferential growth along the c-axis, with low transmittance.It is found that the contact between Al and VSe_2/Mo is ohmic contact. Compared to Mo substrate, lower square resistance and higher carrier concentration of the VSe_2/Mo sample reveal that the VSe_2 film may be a potential material for thin film solar cells or other semiconductor devices. The new synthetic strategy that is developed here paves a sustainable way to the application of VSe_2 in photovoltaic devices. 展开更多
关键词 TWO-STEP ROUTE VSe2 SELENIZATION THIN FILM
原文传递
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics 被引量:1
2
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 Li-S battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure Built-in electric field
在线阅读 下载PDF
Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe_(2) film
3
作者 Junyu Zong Yang Xie +15 位作者 Qinghao Meng Qichao Tian Wang Chen Xuedong Xie Shaoen Jin Yongheng Zhang Li Wang Wei Ren Jian Shen Aixi Chen Pengdong Wang Fang-Sen Li Zhaoyang Dong Can Wang Jian-Xin Li Yi Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期137-145,共9页
As a special order of electronic correlation induced by spatial modulation, the charge density wave(CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning-tunneling microscopy in... As a special order of electronic correlation induced by spatial modulation, the charge density wave(CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning-tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the(■) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe_(2) film. Combining the variable-temperature angle-resolved photoemission spectroscopic(ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts △_(1) and△_(2). The gap part ?1 that closes around ~ 150 K is accompanied with the vanish of the(√7×√3) CDW phase. While another momentum-dependent gap part △_(2) can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure △_(1) +△_(2), which suggests different forming mechanisms between the(√7×√3) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe_(2) film as a two-dimensional(2D) material. 展开更多
关键词 charge density waves VSe_(2) band structures STM ARPES
原文传递
Thickness-dependent and strain-tunable magnetism in twodimensional van der Waals VSe_(2)
4
作者 Wenjuan Ci Huali Yang +5 位作者 Wuhong Xue Ruilong Yang Baohua Lv Peng Wang Run-Wei Li Xiao-Hong Xu 《Nano Research》 SCIE EI CSCD 2022年第8期7597-7603,共7页
Two-dimensional(2D)van der Waals(vdW)magnetic materials with reduced dimensionality often exhibit unexpected properties compared to their bulk counterparts.In particular,the mechanical flexibility of 2D structure,enha... Two-dimensional(2D)van der Waals(vdW)magnetic materials with reduced dimensionality often exhibit unexpected properties compared to their bulk counterparts.In particular,the mechanical flexibility of 2D structure,enhanced ferromagnetism at reduced layer thickness,as well as robust perpendicular magnetic anisotropy are quite appealing for constructing novel spintronic devices.The vdW vanadium diselenide(VSe_(2))is an attractive material whose bulk is paramagnetic while monolayer is ferromagnetic with a Curie temperature(Tc)above room temperature.To explore its possible device applications,a detailed investigation on the thickness-dependent magnetism and strain modulation behavior of VSe_(2)is highly demanded.In this article,the VSe_(2)nanoflakes were controllably prepared via chemical vapor deposition(CVD)method.The few-layer single VSe_(2)nanoflakes were found to exhibit magnetic domain structures at room temperature.Ambient magnetic force microscopy(MFM)phase images reveal a clear thickness-dependent magnetism and the MFM phase contrast is traceable for the nanoflakes of layer thickness below~6 nm.Moreover,applying strain is found efficient in modulating the magnetic moment and coercive field of 2D VSe_(2)at room temperature.These results are helpful for understanding the ferromagnetism of high temperature 2D magnets and for constructing novel straintronic devices or flexible spintronic devices. 展开更多
关键词 room-temperature ferromagnetism thickness-dependent magnetism strain-modulated magnetism two-dimensional(2D)vanadium diselenide(VSe_(2))
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部