When multiple LCC-HVDC transmission lines are densely fed into a receiving AC system,voltage dips can easily propagate in the power system,resulting in multiple LCC commutation failures simultaneously.The VSC-HVDC can...When multiple LCC-HVDC transmission lines are densely fed into a receiving AC system,voltage dips can easily propagate in the power system,resulting in multiple LCC commutation failures simultaneously.The VSC-HVDC can be used to divide the receiving sys-tem into several interconnected sub-partitions and improve the voltage support capability of the receiving system.Compared with asyn-chronous interconnection,which completely separates the receiving systems with VSC-HVDC,incomplete segmentation with an AC connection is a more pertinent segmenting method for multilayer complex regional power grids.To analyze the voltage support capability of the VSC in incomplete segmentation,a micro-incremental model of the VSC was established,the operating impedance of the VSC was calculated,and the voltage support function of the VSC was quantified.The effect of the fault on the system short-circuit capacity was analyzed,and a calculation method for the multi-infeed short-circuit ratio in an incompletely segmented scenario was obtained.A VSC-segmented model of a two-infeed DC system was built on the EMTDC/PSCAD simulation platform,and the validity of the micro-increment model and accuracy of the proposed conclusions were verified.展开更多
风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对...风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。展开更多
基金supported by the State Grid Science and Technology Project 5108-202218280A-2-87-XG.
文摘When multiple LCC-HVDC transmission lines are densely fed into a receiving AC system,voltage dips can easily propagate in the power system,resulting in multiple LCC commutation failures simultaneously.The VSC-HVDC can be used to divide the receiving sys-tem into several interconnected sub-partitions and improve the voltage support capability of the receiving system.Compared with asyn-chronous interconnection,which completely separates the receiving systems with VSC-HVDC,incomplete segmentation with an AC connection is a more pertinent segmenting method for multilayer complex regional power grids.To analyze the voltage support capability of the VSC in incomplete segmentation,a micro-incremental model of the VSC was established,the operating impedance of the VSC was calculated,and the voltage support function of the VSC was quantified.The effect of the fault on the system short-circuit capacity was analyzed,and a calculation method for the multi-infeed short-circuit ratio in an incompletely segmented scenario was obtained.A VSC-segmented model of a two-infeed DC system was built on the EMTDC/PSCAD simulation platform,and the validity of the micro-increment model and accuracy of the proposed conclusions were verified.
文摘风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。