The Görtler vortex is a characteristic flow feature observed in the boundary layer on compression ramp in hypersonic flow.In the context of high-enthalpy plasma flows during aerospace re-entry processes,there is ...The Görtler vortex is a characteristic flow feature observed in the boundary layer on compression ramp in hypersonic flow.In the context of high-enthalpy plasma flows during aerospace re-entry processes,there is currently a lack of effective means to visualize the boundary layer.In this study,the Nitric Oxide Planar Laser-Induced Fluorescence(NO-PLIF)technique was employed to visualize the boundary layer of a compression ramp in a 50-MW arc-heated plasma wind tunnel.Görtler-like vortex structures were observed in the boundary layer of the ramp.This is the first time that Görtler vortices have been clearly observed in a high-enthalpy plasma flow.By varying the flow conditions,the Görtler vortices persisted in the boundary layer of the ramp when the total enthalpy of the arc-heated wind tunnel exceeded 12.3 MJ/kg.Several image processing techniques were applied to extract the structure of high-speed Görtler streaks,and the position of the high-speed streaks was found to be non-fixed,whereas the average Görtler wavelength remained at approximately 30 mm at a 10°ramp and showed limited variation with the total enthalpy.Additionally,a sheet-forming optics system with an adjustable angle and height was designed to enable visualization of the Görtler vortices in the boundary layer of the ramp at different angles and heights.The vortices on the low-angle ramp exhibited better stability and shorter wavelengths.Visualization results at different heights confirmed that the Görtler vortex wavelength was approximately twice the boundary layer thickness.This study demonstrates the feasibility and potential of the PLIF technique for the visualization of the boundary layer in plasma flows,especially with regard to Görtler vortices.展开更多
Although previous studies have analyzed the unique structural characteristics of the polar vortices on Earth,Venus,Mars,and Titan,the understanding of the polar vortices on Venus and Titan is primarily based on small-...Although previous studies have analyzed the unique structural characteristics of the polar vortices on Earth,Venus,Mars,and Titan,the understanding of the polar vortices on Venus and Titan is primarily based on small-scale case studies due to the limited resolution and coverage of observational data.Conducting a detailed comparison of the polar vortex characteristics between the major terrestrial planets and Titan in the solar system is more challenging.In order to more finely compare the polar vortex characteristics of the main terrestrial planets in the solar system with Titan,we have achieved the optimal estimation of the polar vortices of Venus and Titan under existing conditions based on the advanced VCD2.3 and TitanWRF model.At the same time,combining ERA5 and EMARS databases,a detailed spatiotemporal comparison of polar vortex characteristics between terrestrial planets with atmospheres in the solar system and the most Earth-like Titan satellite was conducted for the first time.Here,we demonstrate that:(1)The circulation characteristics of Mars above the 1 mbar level are very similar to those at 1000 mbar in the lower layers of Titan,with seasonal variations of the same height.(2)In contrast to the vortex structure that is stably maintained in the lead direction in the polar regions of Mars and Earth during the winter,the time of occurrence of the peak vortex intensity at Titan and Venus is gradually shifted forward with increasing altitude.(3)When Venus undergoes vortex instability drift,the polar vortex at an altitude of 1 mbar breaks up into banded structures,a phenomenon that closely resembles the twisting deformation of PV structures during weak stratospheric polar vortex events on Earth.展开更多
Streamwise vortex instability is one of the most potent mechanisms for the transition of the three-dimensional boundary layers.By using the global stability analysis methods,stability characteristics of the leeward vo...Streamwise vortex instability is one of the most potent mechanisms for the transition of the three-dimensional boundary layers.By using the global stability analysis methods,stability characteristics of the leeward vortex over a blunt cone with an angle of attack under a typical wind tunnel condition are studied and are compared to the case with a smaller wall temperature ratio(corresponding to a flight condition).The vortical structure features inward and outward vortices,similar to that in the flight con-dition.Unlike the flight condition,the outward vortices appear stronger than the inward vortices,resulting in stronger outer-mode instabilities.Although the inner mode is heavily stabilized compared to the flight condition,it can still radiate apparent acoustics.The acoustic sources are computed based on Lighthill's acoustic analogy,showing that the entropy term measuring the deviation from the isentropic relation is dominant.While Mack second mode is shown to most likely trigger the transition in the flight condition,it is absent in the wind tunnel condition,and a shear-layer mode turns out to be the most dangerous instead.Moreover,the instability frequencies and growth rates of the wind tunnel case are much smaller than those of the flight case,indicating that wall heating may stabilize the leeward vortices.展开更多
Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the a...Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.展开更多
We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved e...We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments.展开更多
Modulated electronic state due to the layered crystal structures brings about moderate anisotropy of superconductivity in the iron-based superconductors and thus Abrikosov vortices are expected in the mixed state.Howe...Modulated electronic state due to the layered crystal structures brings about moderate anisotropy of superconductivity in the iron-based superconductors and thus Abrikosov vortices are expected in the mixed state.However,based on the angular and temperature dependent transport measurements in iron-based superconductor Ca_(10)(Pt_(3)As_(8))((Fe_(0.9)Pt_(0.1))_(2)As_(2))_(5) with Tc(≌)12 K,we find clear evidences of a crossover from Abrikosov vortices to Josephson vortices at a crossover temperature T*(≌)7 K,when the applied magnetic field is parallel to the superconducting FeAs layers,i.e.,the angle between the magnetic field and the FeAs layers θ=0°.This crossover to Josephson vortices is demonstrated by an abnormal decrease(increase)of the critical current(flux-flow resistance)below T*,in contrast to the increase(decrease)of the critical current(flux-flow resistance)above T* expected for Abrikosov vortices.Furthermore,when θ is larger than 0.5°,the flux-flow resistance and critical current have no anomalous behaviors across T*.These anomalous behaviors can be understood in terms of the distinct transition from the well-pinned Abrikosov vortices to the weakly-pinned Josephson vortices upon cooling,when the coherent length perpendicular to the FeAs layers ξ⊥ becomes shorter than half of the interlayer distance d/2.These experimental findings indicate the existence of intrinsic Josephson junctions below T* and thus quasi-two-dimensional superconductivity in Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5,similar to those in the cuprate superconductors.展开更多
The generation of optical vortices in compact systems and across different spectral regions can open new horizons for their applications in end-user devices.Latest advances in the design and fabrication of optical met...The generation of optical vortices in compact systems and across different spectral regions can open new horizons for their applications in end-user devices.Latest advances in the design and fabrication of optical metasurfaces made of a quadratically nonlinear material enable highly precise creation of vortices with different topological charges at the second-harmonic frequency,with the potential to obtain various other structured states of light.展开更多
Eight sets of numerical experiments are performed in 48 hours of integtation by using a barotropic primitive equation model with a topographic term so as to investigate the effect of topography on the merging of vorti...Eight sets of numerical experiments are performed in 48 hours of integtation by using a barotropic primitive equation model with a topographic term so as to investigate the effect of topography on the merging of vortices. It is pointed out that the introduction of topography may change the track of vortices, and it causes the low vortices and vorticity lumps to be detained on the southeast side of the topography, thus creating a favorable condition for the merging of the low vortex and vorticity lumps. It is also shown that the effect of topography may cause double mergers of vortices in a horizontally shearing basic flow, and it can strengthen the low vortex remarkably.展开更多
Five numerical experiments have been performed in this paper by using a quasigtostrophic barotropical model to investigate the interaction of different scale vortiCes on the structure and motion of typhoons.Results sh...Five numerical experiments have been performed in this paper by using a quasigtostrophic barotropical model to investigate the interaction of different scale vortiCes on the structure and motion of typhoons.Results show that this interaction may arouse the irregular changes of the asymmetric structure of typhoons,thus leading to anomalous Phenomena such as meandering tracks and sudden changes in the motion speed of typhoons;the  ̄t Of this interaction on the strucure and motion may be quite different when the smaller vortex is situated in different Posihons of the typhoon circulation.展开更多
Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the...Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and flooding downstream of the TP (e.g., in Sichuan province or over the Yangtze River Valley). Identifying and tracking TPVs is difficult because of their comparatively small horizontal extent (400-800 kin) and the limited availability of soundings over the TP, which in turn constitutes a challenge for short-term predictions of TPV-related impacts and for the climatological study of TPVs. In this study, (i) manual tracking (MT) results using radiosonde data from a network over and downstream of the TP are compared with (ii) results obtained by an automated tracking (AT) algorithm applied to ERA-Interim data. Ten MT-TPV cases are selected based on method (i) and matched to and compared with the corresponding AT-TPVs identified with method (ii). Conversely, ten AT-TPVs are selected and compared with the corresponding MT-TPVs. In general, the comparison shows good results in cases where the underlying data are in good agreement, but considerable differences are also seen in some cases and explained in terms of differences in the tracking methods, data availability/coverage and disagreement between sounding and ERA-Interim data. Recommendations are given for future efforts in TPV detection and tracking, including in an operational weather forecasting context.展开更多
The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results s...The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results show that the optical intensity in the focal region can be altered considerably by changing the location of the vortices nested in a radially polarized Gaussian beam. It is noted that focal evolution from one annular focal pattern to a highly confined focal spot in the transverse direction is observed corresponding to the change in the location of the optical vortices in the input plane. It is also observed that the generated focal hole or spot lead to a focal shift along the optical axis remarkably under proper radial phase modulation. Hence the proposed system may be applied to construct tunable optical traps for both high and low refractive index particles.展开更多
The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated v...The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.展开更多
The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations a...The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis.展开更多
In this paper, we continue to construct stationary classical solutions for the incompressible planar flows approximating singular stationary solutions of this problem. This procedure is carried out by constructing sol...In this paper, we continue to construct stationary classical solutions for the incompressible planar flows approximating singular stationary solutions of this problem. This procedure is carried out by constructing solutions for the following elliptic equations{-△u=λ∑1Bδ(x0,j)(u-kj)p+,in Ω,u=0,onΩ is a bounded simply-connected smooth domain, ki (i = 1,… , k) is prescribed positive constant. The result we prove is that for any given non-degenerate critical pointX0=(x0,1,…,x0,k of the Kirchhoff-Routh function defined on Ωk corresponding to ( k1,……kk )there exists a stationary classical solution approximating stationary k points vortex solution. Moreover, as λ→+∞ shrinks to {x05}, and the local vorticity strength near each x0,j approaches kj, j = 1,… , k. This result makes the study of the above problem with p _〉 0 complete since the cases p 〉 1, p = 1, p = 0 have already been studied in [11, 12] and [13] respectively.展开更多
An experimental study was conducted with the aim of understanding behavior of asymmetric vortices flow over a chined fuselage.The tests were carried out in a wind tunnel at Reynolds number of 1.87 · 105 under the...An experimental study was conducted with the aim of understanding behavior of asymmetric vortices flow over a chined fuselage.The tests were carried out in a wind tunnel at Reynolds number of 1.87 · 105 under the conditions of high angles of attack and zero angle of sideslip.The results show that leeward vortices flow becomes asymmetric vortices flow when angle of attack increases over 20.The asymmetric vortices flow is asymmetry of two forebody vortices owing to the increase of angle of attack but not asymmetry of vortex breakdown which appears when angle of attack is above 35.Asymmetric vortices flow is sensitive to tip perturbation and is nondeterministic due to randomly distributed natural minute geometrical irregularities on the nose tip within machining tolerance.Deterministic asymmetric vortices flow can be obtained by attaching artificial tip perturbation which can trigger asymmetric vortices flow and decide asymmetric vortices flow pattern.Triggered by artificial tip perturbation, the vortex on the same side with perturbation is in a higher position, and the other vortex on the opposite side is in a lower position.Vortex suction on the lower vortex side is larger, which corresponds to a side force pointing to the lower vortex side.展开更多
Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic...Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically. Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases. However, they may have a more significant impact on the TC track under the following circumstances. First, the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region. This configuration may last for 8 h, and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion. Second, two mesoscale vortices located in the EV circulation may merge, and the merged vortex shifts into the EV inner region, intensifying both the EV and steering flow for the TC, increasing speed of the TC.展开更多
The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different ...The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained. The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed.展开更多
In the present paper, physical mechanism responsible for origin of streamwise vortices in mode A appeared in the threedimensional (3-D) wake transition of a square-section cylinder is investigated. Direct numerical si...In the present paper, physical mechanism responsible for origin of streamwise vortices in mode A appeared in the threedimensional (3-D) wake transition of a square-section cylinder is investigated. Direct numerical simulations at a Reynolds number of 180 firstly show that such streamwise vorticity is not originated from lateral surfaces. Then through the analysis of local flow field in the immediate neighborhood of rear surface, based on the theory of vortex-induced vortex, a new physical mechanism is identified. At first, the vertical vorticity on rear surface is generated by the intrinsic three-dimensional instability with the same instability wavelength of mode A. Then the streamwise vorticity at a specific sign is induced by such vertical vorticity, convected and concentrated in the shear layers. Finally, streamwise vortices are formed and shed with alternatively shedding spanwise vortices in the near wake. Moreover, the effect of induced spanwise vorticity on original two-dimensional (2-D) spanwise vorticity is also presented in detail.展开更多
The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force bala...The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the down-wash flow induced by the tip vortices was weakened. However,vortex breakdown occurred as the wing lowered to the ground.From the experimental results of aerodynamics,the maximum lift-to-drag ratio was observed when the angle of attack was 2.5°and the ground clearance was 0.2.展开更多
Recently,physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications.Therein,topological light fields,...Recently,physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications.Therein,topological light fields,because of their unique opportunity of combining experimental and analytical studies,are attracting more interest.Here,based on the Pancharatnam-Berry(PB)phase,we report the creation of Hopf linked and Trefoil knotted optical vortices by using phaseonly encoded liquid crystal(LC)holographic plates.Utilizing scanning measurement and the digital holographic interference method,we accurately locate the vortex singularities and map these topological nodal lines in three-dimensions.Compared with the common methods realized by the spatial light modulator(SLM),the phase-only LC plate is more efficient.Meanwhile,the smaller pixel size of the LC element reduces the imperfection induced by optical misalignment and pixellation.Moreover,we analyze the influence of the incident beam size on the topological configuration.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62175053,62305087)。
文摘The Görtler vortex is a characteristic flow feature observed in the boundary layer on compression ramp in hypersonic flow.In the context of high-enthalpy plasma flows during aerospace re-entry processes,there is currently a lack of effective means to visualize the boundary layer.In this study,the Nitric Oxide Planar Laser-Induced Fluorescence(NO-PLIF)technique was employed to visualize the boundary layer of a compression ramp in a 50-MW arc-heated plasma wind tunnel.Görtler-like vortex structures were observed in the boundary layer of the ramp.This is the first time that Görtler vortices have been clearly observed in a high-enthalpy plasma flow.By varying the flow conditions,the Görtler vortices persisted in the boundary layer of the ramp when the total enthalpy of the arc-heated wind tunnel exceeded 12.3 MJ/kg.Several image processing techniques were applied to extract the structure of high-speed Görtler streaks,and the position of the high-speed streaks was found to be non-fixed,whereas the average Görtler wavelength remained at approximately 30 mm at a 10°ramp and showed limited variation with the total enthalpy.Additionally,a sheet-forming optics system with an adjustable angle and height was designed to enable visualization of the Görtler vortices in the boundary layer of the ramp at different angles and heights.The vortices on the low-angle ramp exhibited better stability and shorter wavelengths.Visualization results at different heights confirmed that the Görtler vortex wavelength was approximately twice the boundary layer thickness.This study demonstrates the feasibility and potential of the PLIF technique for the visualization of the boundary layer in plasma flows,especially with regard to Görtler vortices.
文摘Although previous studies have analyzed the unique structural characteristics of the polar vortices on Earth,Venus,Mars,and Titan,the understanding of the polar vortices on Venus and Titan is primarily based on small-scale case studies due to the limited resolution and coverage of observational data.Conducting a detailed comparison of the polar vortex characteristics between the major terrestrial planets and Titan in the solar system is more challenging.In order to more finely compare the polar vortex characteristics of the main terrestrial planets in the solar system with Titan,we have achieved the optimal estimation of the polar vortices of Venus and Titan under existing conditions based on the advanced VCD2.3 and TitanWRF model.At the same time,combining ERA5 and EMARS databases,a detailed spatiotemporal comparison of polar vortex characteristics between terrestrial planets with atmospheres in the solar system and the most Earth-like Titan satellite was conducted for the first time.Here,we demonstrate that:(1)The circulation characteristics of Mars above the 1 mbar level are very similar to those at 1000 mbar in the lower layers of Titan,with seasonal variations of the same height.(2)In contrast to the vortex structure that is stably maintained in the lead direction in the polar regions of Mars and Earth during the winter,the time of occurrence of the peak vortex intensity at Titan and Venus is gradually shifted forward with increasing altitude.(3)When Venus undergoes vortex instability drift,the polar vortex at an altitude of 1 mbar breaks up into banded structures,a phenomenon that closely resembles the twisting deformation of PV structures during weak stratospheric polar vortex events on Earth.
基金supported by the National Natural Science Foundation of China(Grant No.92052301).
文摘Streamwise vortex instability is one of the most potent mechanisms for the transition of the three-dimensional boundary layers.By using the global stability analysis methods,stability characteristics of the leeward vortex over a blunt cone with an angle of attack under a typical wind tunnel condition are studied and are compared to the case with a smaller wall temperature ratio(corresponding to a flight condition).The vortical structure features inward and outward vortices,similar to that in the flight con-dition.Unlike the flight condition,the outward vortices appear stronger than the inward vortices,resulting in stronger outer-mode instabilities.Although the inner mode is heavily stabilized compared to the flight condition,it can still radiate apparent acoustics.The acoustic sources are computed based on Lighthill's acoustic analogy,showing that the entropy term measuring the deviation from the isentropic relation is dominant.While Mack second mode is shown to most likely trigger the transition in the flight condition,it is absent in the wind tunnel condition,and a shear-layer mode turns out to be the most dangerous instead.Moreover,the instability frequencies and growth rates of the wind tunnel case are much smaller than those of the flight case,indicating that wall heating may stabilize the leeward vortices.
基金Project supported by the National Key R&D Program of China(Grant No.2023YFE0201900)。
文摘Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110198)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2024A1515030131 and 2021A1515010214)+2 种基金the National Natural Science Foundation of China(Grant Nos.12274077,11905032,and 12475014)the Research Fund of the Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(Grant No.2020B1212030010)the Israel Science Foundation(Grant No.1695/22).
文摘We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0302903)the National Natural Science Foundation of China(Grant No.11974412).
文摘Modulated electronic state due to the layered crystal structures brings about moderate anisotropy of superconductivity in the iron-based superconductors and thus Abrikosov vortices are expected in the mixed state.However,based on the angular and temperature dependent transport measurements in iron-based superconductor Ca_(10)(Pt_(3)As_(8))((Fe_(0.9)Pt_(0.1))_(2)As_(2))_(5) with Tc(≌)12 K,we find clear evidences of a crossover from Abrikosov vortices to Josephson vortices at a crossover temperature T*(≌)7 K,when the applied magnetic field is parallel to the superconducting FeAs layers,i.e.,the angle between the magnetic field and the FeAs layers θ=0°.This crossover to Josephson vortices is demonstrated by an abnormal decrease(increase)of the critical current(flux-flow resistance)below T*,in contrast to the increase(decrease)of the critical current(flux-flow resistance)above T* expected for Abrikosov vortices.Furthermore,when θ is larger than 0.5°,the flux-flow resistance and critical current have no anomalous behaviors across T*.These anomalous behaviors can be understood in terms of the distinct transition from the well-pinned Abrikosov vortices to the weakly-pinned Josephson vortices upon cooling,when the coherent length perpendicular to the FeAs layers ξ⊥ becomes shorter than half of the interlayer distance d/2.These experimental findings indicate the existence of intrinsic Josephson junctions below T* and thus quasi-two-dimensional superconductivity in Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5,similar to those in the cuprate superconductors.
文摘The generation of optical vortices in compact systems and across different spectral regions can open new horizons for their applications in end-user devices.Latest advances in the design and fabrication of optical metasurfaces made of a quadratically nonlinear material enable highly precise creation of vortices with different topological charges at the second-harmonic frequency,with the potential to obtain various other structured states of light.
基金supported jointly by the“973”Project on heavy rain in China,the National Natural Science Foundation of China under Grant No.40333028the Science and Technology Department of China under special project 2001 DIA20026.
文摘Eight sets of numerical experiments are performed in 48 hours of integtation by using a barotropic primitive equation model with a topographic term so as to investigate the effect of topography on the merging of vortices. It is pointed out that the introduction of topography may change the track of vortices, and it causes the low vortices and vorticity lumps to be detained on the southeast side of the topography, thus creating a favorable condition for the merging of the low vortex and vorticity lumps. It is also shown that the effect of topography may cause double mergers of vortices in a horizontally shearing basic flow, and it can strengthen the low vortex remarkably.
文摘Five numerical experiments have been performed in this paper by using a quasigtostrophic barotropical model to investigate the interaction of different scale vortiCes on the structure and motion of typhoons.Results show that this interaction may arouse the irregular changes of the asymmetric structure of typhoons,thus leading to anomalous Phenomena such as meandering tracks and sudden changes in the motion speed of typhoons;the  ̄t Of this interaction on the strucure and motion may be quite different when the smaller vortex is situated in different Posihons of the typhoon circulation.
基金supported by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund grant agreement P100195 between the Met Office and the National Centre for Atmospheric Science at the University of Reading for the MESETA(Modelling Physical and Dynamical Processes over the Tibetan Plateau and their Regional Effects over East Asia) project
文摘Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and flooding downstream of the TP (e.g., in Sichuan province or over the Yangtze River Valley). Identifying and tracking TPVs is difficult because of their comparatively small horizontal extent (400-800 kin) and the limited availability of soundings over the TP, which in turn constitutes a challenge for short-term predictions of TPV-related impacts and for the climatological study of TPVs. In this study, (i) manual tracking (MT) results using radiosonde data from a network over and downstream of the TP are compared with (ii) results obtained by an automated tracking (AT) algorithm applied to ERA-Interim data. Ten MT-TPV cases are selected based on method (i) and matched to and compared with the corresponding AT-TPVs identified with method (ii). Conversely, ten AT-TPVs are selected and compared with the corresponding MT-TPVs. In general, the comparison shows good results in cases where the underlying data are in good agreement, but considerable differences are also seen in some cases and explained in terms of differences in the tracking methods, data availability/coverage and disagreement between sounding and ERA-Interim data. Recommendations are given for future efforts in TPV detection and tracking, including in an operational weather forecasting context.
文摘The tight focusing properties of a radially polarized Gaussian beam with a nested pair of vortices having a radial wave front distribution are investigated theoretically by the vector diffraction theory. The results show that the optical intensity in the focal region can be altered considerably by changing the location of the vortices nested in a radially polarized Gaussian beam. It is noted that focal evolution from one annular focal pattern to a highly confined focal spot in the transverse direction is observed corresponding to the change in the location of the optical vortices in the input plane. It is also observed that the generated focal hole or spot lead to a focal shift along the optical axis remarkably under proper radial phase modulation. Hence the proposed system may be applied to construct tunable optical traps for both high and low refractive index particles.
基金supported by the National Natural Science Foundation of China(Nos.11402088 and 51376062)the Fundamental Research Funds for the Central Universities(No.2014MS33)State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS15005)
文摘The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.
基金supported by the National Natural Science Foundation of China (10432020, 10872019 and 10702004)
文摘The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis.
文摘In this paper, we continue to construct stationary classical solutions for the incompressible planar flows approximating singular stationary solutions of this problem. This procedure is carried out by constructing solutions for the following elliptic equations{-△u=λ∑1Bδ(x0,j)(u-kj)p+,in Ω,u=0,onΩ is a bounded simply-connected smooth domain, ki (i = 1,… , k) is prescribed positive constant. The result we prove is that for any given non-degenerate critical pointX0=(x0,1,…,x0,k of the Kirchhoff-Routh function defined on Ωk corresponding to ( k1,……kk )there exists a stationary classical solution approximating stationary k points vortex solution. Moreover, as λ→+∞ shrinks to {x05}, and the local vorticity strength near each x0,j approaches kj, j = 1,… , k. This result makes the study of the above problem with p _〉 0 complete since the cases p 〉 1, p = 1, p = 0 have already been studied in [11, 12] and [13] respectively.
基金supported by the National Natural Science Foundation of China (Nos.11172030, 11102012 and 11472028)
文摘An experimental study was conducted with the aim of understanding behavior of asymmetric vortices flow over a chined fuselage.The tests were carried out in a wind tunnel at Reynolds number of 1.87 · 105 under the conditions of high angles of attack and zero angle of sideslip.The results show that leeward vortices flow becomes asymmetric vortices flow when angle of attack increases over 20.The asymmetric vortices flow is asymmetry of two forebody vortices owing to the increase of angle of attack but not asymmetry of vortex breakdown which appears when angle of attack is above 35.Asymmetric vortices flow is sensitive to tip perturbation and is nondeterministic due to randomly distributed natural minute geometrical irregularities on the nose tip within machining tolerance.Deterministic asymmetric vortices flow can be obtained by attaching artificial tip perturbation which can trigger asymmetric vortices flow and decide asymmetric vortices flow pattern.Triggered by artificial tip perturbation, the vortex on the same side with perturbation is in a higher position, and the other vortex on the opposite side is in a lower position.Vortex suction on the lower vortex side is larger, which corresponds to a side force pointing to the lower vortex side.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40775038,40875031 and 40975036)
文摘Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically. Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases. However, they may have a more significant impact on the TC track under the following circumstances. First, the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region. This configuration may last for 8 h, and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion. Second, two mesoscale vortices located in the EV circulation may merge, and the merged vortex shifts into the EV inner region, intensifying both the EV and steering flow for the TC, increasing speed of the TC.
文摘The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained. The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed.
文摘In the present paper, physical mechanism responsible for origin of streamwise vortices in mode A appeared in the threedimensional (3-D) wake transition of a square-section cylinder is investigated. Direct numerical simulations at a Reynolds number of 180 firstly show that such streamwise vorticity is not originated from lateral surfaces. Then through the analysis of local flow field in the immediate neighborhood of rear surface, based on the theory of vortex-induced vortex, a new physical mechanism is identified. At first, the vertical vorticity on rear surface is generated by the intrinsic three-dimensional instability with the same instability wavelength of mode A. Then the streamwise vorticity at a specific sign is induced by such vertical vorticity, convected and concentrated in the shear layers. Finally, streamwise vortices are formed and shed with alternatively shedding spanwise vortices in the near wake. Moreover, the effect of induced spanwise vorticity on original two-dimensional (2-D) spanwise vorticity is also presented in detail.
基金supported by the National Natural Science Foundation of China(11072142)Shanghai Program for Innovative Research Team in Universities
文摘The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the down-wash flow induced by the tip vortices was weakened. However,vortex breakdown occurred as the wing lowered to the ground.From the experimental results of aerodynamics,the maximum lift-to-drag ratio was observed when the angle of attack was 2.5°and the ground clearance was 0.2.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11634010,91850118,11774289,61675168,and 11804277)the National Key Research and Development Program of China(Grant No.2017YFA0303800)+1 种基金the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.U1630125)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102018zy036,3102019JC008,and 310201911cx022)。
文摘Recently,physical fields with topological configurations are evoking increasing attention due to their fascinating structures both in fundamental researches and practical applications.Therein,topological light fields,because of their unique opportunity of combining experimental and analytical studies,are attracting more interest.Here,based on the Pancharatnam-Berry(PB)phase,we report the creation of Hopf linked and Trefoil knotted optical vortices by using phaseonly encoded liquid crystal(LC)holographic plates.Utilizing scanning measurement and the digital holographic interference method,we accurately locate the vortex singularities and map these topological nodal lines in three-dimensions.Compared with the common methods realized by the spatial light modulator(SLM),the phase-only LC plate is more efficient.Meanwhile,the smaller pixel size of the LC element reduces the imperfection induced by optical misalignment and pixellation.Moreover,we analyze the influence of the incident beam size on the topological configuration.