VOF(Volume Of Fluid)方法能够通过在欧拉网格上使用离散的体积分数域表示光滑界面,在不可混合流体的数值模拟中得到广泛应用。针对多相流仿真中的液滴曲率计算问题,开发了一种计算界面曲率的算法。首先提出了一种新的数据生成方法,在...VOF(Volume Of Fluid)方法能够通过在欧拉网格上使用离散的体积分数域表示光滑界面,在不可混合流体的数值模拟中得到广泛应用。针对多相流仿真中的液滴曲率计算问题,开发了一种计算界面曲率的算法。首先提出了一种新的数据生成方法,在液滴界面上进行随机采样,增强网格内体积分数的信息量,并调整取值范围以覆盖正负曲率。然后改进了传统的深度神经网络(DNN)模型,使其在计算曲率时保持对称性。基于VOF方法与该模型,利用目标单元及邻近单元体积分数计算曲率。最后选取最优模型并应用于Basilisk软件中,以提高计算曲率的准确性和稳定性。测试结果表明,其计算曲率时准确稳定。在计算小半径液滴曲率时,误差减小了25%至50%,并能用于液滴融合仿真,证明了其应用价值。展开更多
Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishe...Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.展开更多
VOF(Volume of Fluid)方法由于其良好的守恒性和网格适应性,且具有计算资源需求相对较小等优点,成为船舶水动力学领域自由面流动CFD(Computational Fluid Dynamics)模拟的主流方法。但原始的VOF方法存在较为严重的界面扩散问题,导致模...VOF(Volume of Fluid)方法由于其良好的守恒性和网格适应性,且具有计算资源需求相对较小等优点,成为船舶水动力学领域自由面流动CFD(Computational Fluid Dynamics)模拟的主流方法。但原始的VOF方法存在较为严重的界面扩散问题,导致模拟的界面厚度过大、空间分辨率不够,进而影响流场相关变量的计算精度,这一问题在非定常自由面流动模拟中尤为明显。本文针对上述问题,通过在VOF控制方程中引入人工对流项以达到抑制界面扩散、压缩界面厚度的目的,并采用隐式离散人工对流项的方式提高计算稳定性,形成了反扩散VOF算法。经Zalesak和剪切场等经典算例在不同数量网格下的测试验证,表明反扩散VOF算法能够大幅压缩界面厚度,同时明显减小质量误差。随后的三维无障碍溃坝算例和破舱进水算例,进一步证明了反扩散VOF算法在实际非定常流动模拟中能够更好地捕捉自由面并提高计算精度。展开更多
This paper aims to investigate a dam break in a channel with a bend in the presence of several obstacles.To accurately determine the flood zones,it is necessary to take into account many factors such as terrain,reserv...This paper aims to investigate a dam break in a channel with a bend in the presence of several obstacles.To accurately determine the flood zones,it is necessary to take into account many factors such as terrain,reservoir volume.Numerical modeling was used to determine the flood zone.Numerical modeling based on the Navier-Stokes equations with a turbulent k-epsilon RNG model,the Volume of Fluid(VOF)method and the PISO algorithm were used to analyze the flow in a bend channel at an angle of 10 with the obstacles.To verify the numerical model,a test on dam break in the 450 channel was conducted.The simulation results were compared with experimental data and with the numerical data of existing data.Having been convinced of the correctness of the mathematical model,the authors carried out a numerical simulation of the main problem in three versions:without barriers,with one obstacle,with two obstacles.According to the obtained numerical results,it can be noted that irregular landforms held the flow,a decrease in water level and a slower time for water emergence could be seen.Thus,the water flow without an obstacle,with one obstacle and with two obstacles showed 4.2 s,4.4 s and 4.6 s of the time of water appearance,respectively.This time shift can give a certain advantage when conducting various events to evacuate people.展开更多
文摘VOF(Volume Of Fluid)方法能够通过在欧拉网格上使用离散的体积分数域表示光滑界面,在不可混合流体的数值模拟中得到广泛应用。针对多相流仿真中的液滴曲率计算问题,开发了一种计算界面曲率的算法。首先提出了一种新的数据生成方法,在液滴界面上进行随机采样,增强网格内体积分数的信息量,并调整取值范围以覆盖正负曲率。然后改进了传统的深度神经网络(DNN)模型,使其在计算曲率时保持对称性。基于VOF方法与该模型,利用目标单元及邻近单元体积分数计算曲率。最后选取最优模型并应用于Basilisk软件中,以提高计算曲率的准确性和稳定性。测试结果表明,其计算曲率时准确稳定。在计算小半径液滴曲率时,误差减小了25%至50%,并能用于液滴融合仿真,证明了其应用价值。
基金funded by the National Key R&D Program of China,China(Grant No.2023YFB4005500)National Natural Science Foundation of China,China(Grant Nos.52379113 and 52379114).
文摘Gas-liquid two-phase flow in fractal porous media is pivotal for engineering applications,yet it remains challenging to be accurately characterized due to complex microstructure-flow interactions.This study establishes a pore-scale numerical framework integratingMonte Carlo-generated fractal porousmedia with Volume of Fluid(VOF)simulations to unravel the coupling among pore distribution characterized by fractal dimension(Df),flow dynamics,and displacement efficiency.A pore-scale model based on the computed tomography(CT)microstructure of Berea sandstone is established,and the simulation results are compared with experimental data.Good agreement is found in phase distribution,breakthrough behavior,and flow path morphology,confirming the reliability of the numerical simulation method.Ten fractal porous media models with Df ranging from 1.25~1.7 were constructed using a Monte-Carlo approach.The gas-liquid two-phase flow dynamics was characterized using the VOF solver across gas injection rates of 0.05-5m/s,inwhich the time-resolved two-phase distribution patternswere systematically recorded.The results reveal that smaller fractal dimensions(Df=1.25~1.45)accelerate fingering breakthrough(peak velocity is 1.73 m/s at Df=1.45)due to a bimodal pore size distribution dominated by narrow channels.Increasing Df amplifies vorticity generation by about 3 times(eddy viscosity is 0.033 Pa⋅s at Df=1.7)through reduced interfacial curvature,while tortuosity-driven pressure differentials transition from sharp increases(0.4~6.3 Pa at Df=1.25~1.3)to inertial plateaus(4.8 Pa at Df=1.7).A nonlinear increase in equilibrium gas volume fraction(fav=0.692 at Df=1.7)emerges from residual gas saturation and turbulence-enhanced dispersion.This behavior is further modulated by flow velocity,with fav peaking at 0.72 under capillary-dominated conditions(0.05 m/s),but decreasing to 0.65 in the inertial regime(0.5 m/s).The work quantitatively links fractal topology to multiphase flow regimes,demonstrating the critical role of Df in governing preferential pathways,energy dissipation,and phase distribution.
文摘VOF(Volume of Fluid)方法由于其良好的守恒性和网格适应性,且具有计算资源需求相对较小等优点,成为船舶水动力学领域自由面流动CFD(Computational Fluid Dynamics)模拟的主流方法。但原始的VOF方法存在较为严重的界面扩散问题,导致模拟的界面厚度过大、空间分辨率不够,进而影响流场相关变量的计算精度,这一问题在非定常自由面流动模拟中尤为明显。本文针对上述问题,通过在VOF控制方程中引入人工对流项以达到抑制界面扩散、压缩界面厚度的目的,并采用隐式离散人工对流项的方式提高计算稳定性,形成了反扩散VOF算法。经Zalesak和剪切场等经典算例在不同数量网格下的测试验证,表明反扩散VOF算法能够大幅压缩界面厚度,同时明显减小质量误差。随后的三维无障碍溃坝算例和破舱进水算例,进一步证明了反扩散VOF算法在实际非定常流动模拟中能够更好地捕捉自由面并提高计算精度。
基金supported by the grant from the Ministry of science and Higher education of the Republic of Kazakhstan(AP23489948).
文摘This paper aims to investigate a dam break in a channel with a bend in the presence of several obstacles.To accurately determine the flood zones,it is necessary to take into account many factors such as terrain,reservoir volume.Numerical modeling was used to determine the flood zone.Numerical modeling based on the Navier-Stokes equations with a turbulent k-epsilon RNG model,the Volume of Fluid(VOF)method and the PISO algorithm were used to analyze the flow in a bend channel at an angle of 10 with the obstacles.To verify the numerical model,a test on dam break in the 450 channel was conducted.The simulation results were compared with experimental data and with the numerical data of existing data.Having been convinced of the correctness of the mathematical model,the authors carried out a numerical simulation of the main problem in three versions:without barriers,with one obstacle,with two obstacles.According to the obtained numerical results,it can be noted that irregular landforms held the flow,a decrease in water level and a slower time for water emergence could be seen.Thus,the water flow without an obstacle,with one obstacle and with two obstacles showed 4.2 s,4.4 s and 4.6 s of the time of water appearance,respectively.This time shift can give a certain advantage when conducting various events to evacuate people.