This study investigates the mercury(Hg)isotope geochemistry of pyrite from the Aketashi volcanic hosted massive sulfide(VMS)deposit in the West Kunlun Orogenic Belt,China,aiming to elucidate the sources of ore-forming...This study investigates the mercury(Hg)isotope geochemistry of pyrite from the Aketashi volcanic hosted massive sulfide(VMS)deposit in the West Kunlun Orogenic Belt,China,aiming to elucidate the sources of ore-forming fluids and the behavior of Hg isotopes during mineralization.The Aketashi deposit is located within a Late Paleozoic back-arc basin,which is characterized by extensive Carboniferous magmatism and hydrothermal activity.Analysis of 19 pyrite ore samples revealed Hg isotope composition withδ^(202)Hg values ranging from−2.48‰to 0.87‰andΔ^(199)Hg values from−0.02‰to 0.40‰.The negativeδ^(202)Hg values are indicative of isotopic fractionation resulting from hydrothermal processes,whereas the positiveΔ^(199)Hg values imply a mixed fluid source comprising both magmatic and seawater-derived components.This study highlights the unique advantage of Hg isotopes in tracing multi-source fluid interactions(e.g.,magmatic vs.seawater-derived)in VMS systems,providing a novel methodology for global metallogenic studies.Our findings not only resolve the longstanding debate on fluid origins at Aketashi but also establish a framework for applying Hg isotopes to other VMS deposits worldwide.展开更多
基金Innovative Research Group Project of the National Natural Science Foundation of China(NSFC Nos.U1603245,U1703242,U1812402).
文摘This study investigates the mercury(Hg)isotope geochemistry of pyrite from the Aketashi volcanic hosted massive sulfide(VMS)deposit in the West Kunlun Orogenic Belt,China,aiming to elucidate the sources of ore-forming fluids and the behavior of Hg isotopes during mineralization.The Aketashi deposit is located within a Late Paleozoic back-arc basin,which is characterized by extensive Carboniferous magmatism and hydrothermal activity.Analysis of 19 pyrite ore samples revealed Hg isotope composition withδ^(202)Hg values ranging from−2.48‰to 0.87‰andΔ^(199)Hg values from−0.02‰to 0.40‰.The negativeδ^(202)Hg values are indicative of isotopic fractionation resulting from hydrothermal processes,whereas the positiveΔ^(199)Hg values imply a mixed fluid source comprising both magmatic and seawater-derived components.This study highlights the unique advantage of Hg isotopes in tracing multi-source fluid interactions(e.g.,magmatic vs.seawater-derived)in VMS systems,providing a novel methodology for global metallogenic studies.Our findings not only resolve the longstanding debate on fluid origins at Aketashi but also establish a framework for applying Hg isotopes to other VMS deposits worldwide.