An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses o...An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses on the typhoon-driven very large floating structures(VLFS)configuration of the maritime airport.The findings indicate that the proposed method enables efficient information exchange between the fluid and structure domains through the coupling interface.The displacement of the maritime airport affected by the typhoon’s wave field is mostly determined by the direction of the flow.The wave loads acting on the floating body also influence the wave profile of the irregular wave and the deformation of the floating body.The von Mises stress distribution is not significant in all parts of the floating body.展开更多
Based on the elastic foundation beam theory and the multi-floating-module hydrodynamic theory,a novel method is proposed to estimate the dynamic responses of VLFS(Very Large Floating Structure).In still water,a VLFS c...Based on the elastic foundation beam theory and the multi-floating-module hydrodynamic theory,a novel method is proposed to estimate the dynamic responses of VLFS(Very Large Floating Structure).In still water,a VLFS can be simplified as an elastic foundation beam model or a multi-floating-module model connected by elastic hinges.According to equivalent displacement of the two models in static analysis,the problem of rotation stiffness of elastic hinges can be solved.Then,based on the potential flow theory,the dynamic responding analysis of multi-floatingmodule model under wave loads can be computed in ANSYS-AQWA software.By assembling the time domain analysis results of each module,the dynamic responses of the VLFS can be obtained.Validation of the method is conducted through a series of comparison calculations,which mainly includes a continuous structure and a three-part structure connected by hinges in regular waves.The results of this paper method show a satisfactory agreement with the experiment and calculation data given in relative references.展开更多
Very Large Floating Structures (VLFS) have received considerable attention recently. Efficient and accurate estimation of their hydroelastic responses in waves is very important for the design. The most efficient appr...Very Large Floating Structures (VLFS) have received considerable attention recently. Efficient and accurate estimation of their hydroelastic responses in waves is very important for the design. The most efficient approach would obviously be the analytical one, Within the category of analytical approaches, the simplified method proposed by Ohkusu and his colleague are of special characteristics. However, when one studies their methods, several questions arise. The purpose of this paper is to critically study the simplified methods proposed by Ohkusu and his colleague in order to answer these questions. Some problems in their original methods have been found and possible improvements are suggested. It is concluded that the improved simplified method using the same idea of Ohkusu and his colleague could provide a reasonable estimate of the hydroelastic response of mat-like VLFS in a certain range of incident angles of waves.展开更多
The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS)under wave action has been investigated in the context of linear water ...The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS)under wave action has been investigated in the context of linear water wave theory.Darcy’s law is adopted to represent energy dissipation in pores.It is assumed that the porous plates are made of material with very fine pores so that the normal velocity across the perforated porous is linearly associated with the pressure drop.In the analytic method,the eigenfunction expansion-matching method(EEMM)for multiple domains is applied to solve the hydrodynamic problem and the elastic equation of motion is solved by the modal expansion method.The performance of the proposed submerged horizontal solid/porous plate can be significantly enhanced by selecting optimal design parameters,such as plate length,horizontal position,submerged depth and porosity.It is concluded that good damping effect can be achieved through installation of solid and porous plate.Porous plate has better damping effect at low frequencies,while solid plate has better damping effect at high frequencies.The optimal ratio of plate length to water depth is 0.25-0.375,and the optimal ratio of submerged depth to water depth is 0.09-0.181.展开更多
This paper numerically and experimentally investigates the hydrodynamic interaction between two semi-submersible type VLFS modules in the frequency domain. Model tests were conducted to investigate the relationship be...This paper numerically and experimentally investigates the hydrodynamic interaction between two semi-submersible type VLFS modules in the frequency domain. Model tests were conducted to investigate the relationship between interactions and wave headings. Numerical studies were performed by solving the radiation-diffraction problem and were validated against the experimental results. Motion Response Amplitude Operators (RAOs) were obtained from numerical and experimental studies. The dependency of the hydrodynamic interaction effect on wave headings is clarified. The influence of different wave periods on the motion responses of two-module VLFS and wave elevations in the gap is studied. The results indicate that the hydrodynamic interactions of the two modules are directly related to the wave headings and the periods of the incident wave. The shielding effect plays an important role in short wave, and the influence decreases with the increase of the incident wavelength. The numerical results based on the diffraction-radiation code can give a relatively good estimation to the responses in short wave while for long wave, it would over-predict the response.展开更多
Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to det...Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to determine the effects of mooring conditions on the hydroelastic response,mooring force,incident coefficient,reflection coefficient and energy dissipation coefficient.Eight mooring cables are symmetrically arranged on both sides of the model.The floating body model satisfies the similarity of stiffness and gravity,while the cable satisfies the similarity of elasticity and gravity.The results show that the effect of mooring type on mooring force is greater than that on hydroelastic response.Increasing the initial tension of the mooring cable will reduce the amplitude of the leeward of the VLFS model.The mooring angle of the mooring cable will affect the maximum mooring force and the initial tension of the mooring line will affect the wave period in which the maximum mooring force occurs.The transmission coefficient and wave energy dissipation coefficient will change regularly with different mooring types.These results may provide a reference to facilitate the mooring design of VLFS.展开更多
This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure(VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direc...This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure(VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy’s law. The hybrid finite element-boundary element(FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves.Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.展开更多
A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport,is proposed.The telescopic piles can au...A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport,is proposed.The telescopic piles can automatically plug in the soil to resist the environmental loads and pull out from the soil to evacuate or move on to the next operational sea.The feasibility demonstration of the conceptual design includes two parts:function verification and structure design.In the latter part of the conceptual design,a time-domain structural analysis is firstly conducted by using Abaqus software.The simulation results suggest that the preliminary structure scheme is not optimum due to the insufficient structure utilization,although both structure safety of the piles and positioning accuracy are guaranteed.To realize a cost reduction of construction and installation,a Genetic Algorithm-Finite Element Analysis(GA-FEA)method is employed to perform structural optimization.After optimization,31 percent of the weight of each pile is reduced and higher structure utilization is maintained.The difference of the self-weight and allowable buoyancy of a single module(SMOD)of a semisubmersible-type VLFS is much larger than the weight of the piles.Combined with the function verification in our previous work,the conceptual design of using the novel telescopic pile to position VLFS is demonstrated to be feasible.展开更多
With the advantages on rapid construction,no limitation of extent,less influence on environment, the VLFS has been turned into the focus of coastal and offshore engineering studying.As the platform,VLFS was built as a...With the advantages on rapid construction,no limitation of extent,less influence on environment, the VLFS has been turned into the focus of coastal and offshore engineering studying.As the platform,VLFS was built as airport,huge oil house etc,and would play the role of ocean economics,politics and military.The restrictive condition of VLFS is strong wave by monsoon,seismic,serious bomb etc.The floating breakwater should be put forward to shelter VLFS.The analysis of wave condition including typhoon route,archipelago and water depth is performed in this paper.The advantage and disadvantage are compared between VLFS and the marine structure from land.展开更多
In this paper a direct coupling analysis method (DCAM) of hydroelastic responses of a very large floating structures (VLFS) in complicated geographical environment is presented. In this method the three-dimensional hy...In this paper a direct coupling analysis method (DCAM) of hydroelastic responses of a very large floating structures (VLFS) in complicated geographical environment is presented. In this method the three-dimensional hydroelasticity theory of floating bodies is combined with the shallow water wave theory, to allow for proper description of the influence of uneven seabed and sheltering effect of islands on the hydroelastic responses of a VLFS deployed near island and reefs in shallow sea. This method and the numerical procedures were verified and validated by comparison-between the predictions and the model test results of a 3-module VLFS and an 8-module VLFS in two simulated shallow sea regions with different seabed topography.展开更多
This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radi...This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.展开更多
The hydroelastic behavior of a moored oil storage vessel subjected to arbitrary time-dependent external loads,which include wind,waves,and currents with different incident directions,is investigated with the time-doma...The hydroelastic behavior of a moored oil storage vessel subjected to arbitrary time-dependent external loads,which include wind,waves,and currents with different incident directions,is investigated with the time-domain modal expansion method.First,the water boundary integral equations on the body surface of a quarter model,which can be obtained via the free-surface Green’s function method,are established.Then,the time-dependent elastic deflection of the moored oil storage vessel is expressed by a superposition of modal functions and corresponding modal amplitudes,and a Galerkin scheme is applied to derive the linear system of equations for the modal amplitudes.The second-order linear differential equations for modal amplitudes are solved via the fourth-order Runge−Kutta method.The present model is validated against existing frequency domain results for a truncated cylinder and a VLFS.Numerical calculations for the moored oil storage vessel are then conducted to obtain the time series of various modal amplitudes and elastic displacements of the measurement points and the corresponding spectra with different incident directions.展开更多
基金supported in part by the National Natural Science Foundation of China(No.51761165022)the Natural Science Foundation of Jiangsu Province(No.BK20210309)the Jiangsu Graduate Research and Practice Innovation Program(No.KYCX21_0234)。
文摘An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses on the typhoon-driven very large floating structures(VLFS)configuration of the maritime airport.The findings indicate that the proposed method enables efficient information exchange between the fluid and structure domains through the coupling interface.The displacement of the maritime airport affected by the typhoon’s wave field is mostly determined by the direction of the flow.The wave loads acting on the floating body also influence the wave profile of the irregular wave and the deformation of the floating body.The von Mises stress distribution is not significant in all parts of the floating body.
基金financially supported by the High-Tech Ship Research Projects sponsored by the Ministry of Industry and Information Technology of China(Grant No.[2019]357)China Postdoctoral Science Foundation(Grant No.2020M683755)。
文摘Based on the elastic foundation beam theory and the multi-floating-module hydrodynamic theory,a novel method is proposed to estimate the dynamic responses of VLFS(Very Large Floating Structure).In still water,a VLFS can be simplified as an elastic foundation beam model or a multi-floating-module model connected by elastic hinges.According to equivalent displacement of the two models in static analysis,the problem of rotation stiffness of elastic hinges can be solved.Then,based on the potential flow theory,the dynamic responding analysis of multi-floatingmodule model under wave loads can be computed in ANSYS-AQWA software.By assembling the time domain analysis results of each module,the dynamic responses of the VLFS can be obtained.Validation of the method is conducted through a series of comparison calculations,which mainly includes a continuous structure and a three-part structure connected by hinges in regular waves.The results of this paper method show a satisfactory agreement with the experiment and calculation data given in relative references.
基金The project was supported by the National Natural Science Foundation of China (Grant No. 50039010) the Science and Technology Development Foundation of Shanghai Municipal Government (Grant No. 00XD14015).
文摘Very Large Floating Structures (VLFS) have received considerable attention recently. Efficient and accurate estimation of their hydroelastic responses in waves is very important for the design. The most efficient approach would obviously be the analytical one, Within the category of analytical approaches, the simplified method proposed by Ohkusu and his colleague are of special characteristics. However, when one studies their methods, several questions arise. The purpose of this paper is to critically study the simplified methods proposed by Ohkusu and his colleague in order to answer these questions. Some problems in their original methods have been found and possible improvements are suggested. It is concluded that the improved simplified method using the same idea of Ohkusu and his colleague could provide a reasonable estimate of the hydroelastic response of mat-like VLFS in a certain range of incident angles of waves.
基金financially supported by the National Key R&D Program of China(Grant No.2019YFC1407700)the National Natural Science Foundation of China(Grant No.51779038)。
文摘The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS)under wave action has been investigated in the context of linear water wave theory.Darcy’s law is adopted to represent energy dissipation in pores.It is assumed that the porous plates are made of material with very fine pores so that the normal velocity across the perforated porous is linearly associated with the pressure drop.In the analytic method,the eigenfunction expansion-matching method(EEMM)for multiple domains is applied to solve the hydrodynamic problem and the elastic equation of motion is solved by the modal expansion method.The performance of the proposed submerged horizontal solid/porous plate can be significantly enhanced by selecting optimal design parameters,such as plate length,horizontal position,submerged depth and porosity.It is concluded that good damping effect can be achieved through installation of solid and porous plate.Porous plate has better damping effect at low frequencies,while solid plate has better damping effect at high frequencies.The optimal ratio of plate length to water depth is 0.25-0.375,and the optimal ratio of submerged depth to water depth is 0.09-0.181.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Mooring position technology:floating support platform engineering(Ⅱ))+1 种基金the Shanghai Sailing Program(Grant No.17YF1409700)the China Scholarship Council(Grant No.201806230206)
文摘This paper numerically and experimentally investigates the hydrodynamic interaction between two semi-submersible type VLFS modules in the frequency domain. Model tests were conducted to investigate the relationship between interactions and wave headings. Numerical studies were performed by solving the radiation-diffraction problem and were validated against the experimental results. Motion Response Amplitude Operators (RAOs) were obtained from numerical and experimental studies. The dependency of the hydrodynamic interaction effect on wave headings is clarified. The influence of different wave periods on the motion responses of two-module VLFS and wave elevations in the gap is studied. The results indicate that the hydrodynamic interactions of the two modules are directly related to the wave headings and the periods of the incident wave. The shielding effect plays an important role in short wave, and the influence decreases with the increase of the incident wavelength. The numerical results based on the diffraction-radiation code can give a relatively good estimation to the responses in short wave while for long wave, it would over-predict the response.
基金financially supported by the National Key R&D Program of China (Grant Nos. 2019YFC1407702 and 2019YFC1407705)
文摘Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to determine the effects of mooring conditions on the hydroelastic response,mooring force,incident coefficient,reflection coefficient and energy dissipation coefficient.Eight mooring cables are symmetrically arranged on both sides of the model.The floating body model satisfies the similarity of stiffness and gravity,while the cable satisfies the similarity of elasticity and gravity.The results show that the effect of mooring type on mooring force is greater than that on hydroelastic response.Increasing the initial tension of the mooring cable will reduce the amplitude of the leeward of the VLFS model.The mooring angle of the mooring cable will affect the maximum mooring force and the initial tension of the mooring line will affect the wave period in which the maximum mooring force occurs.The transmission coefficient and wave energy dissipation coefficient will change regularly with different mooring types.These results may provide a reference to facilitate the mooring design of VLFS.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51490672,51579122 and51609109)the Natural Science Foundation of Jiangsu Province(Grant No.BK20160556)+1 种基金the University Natural Science Research Project of Jiangsu Province(Grant No.16kjb70003)the Key Lab Foundation for Advanced Manufacturing Technology of Jiangsu Province(Grant No.CJ1506)
文摘This paper is concerned with the hydroelastic responses of a mat-like, rectangular very large floating structure(VLFS) edged with a pair of horizontal/inclined perforated anti-motion plates in the context of the direct coupling method. The updated Lagrangian formulae are applied to establish the equilibrium equations of the VLFS and the total potential formula is employed for fluids in the numerical model including the viscous effect of the perforated plates through the Darcy’s law. The hybrid finite element-boundary element(FE-BE) method is implemented to determine the response reduction of VLFS with attached perforated plates under various oblique incident waves.Also, the numerical solutions are validated against a series of experimental tests. The effectiveness of the attached perforated plates in reducing the deflections of the VLFS can be significantly improved by selecting the proper design parameters such as the porous parameter, submergence depth, plate width and inclination angle for the given sea conditions.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Grant No.2018473)the Shanghai Sailing Program(Grant No.17YF1409700)。
文摘A conceptual design of using novel telescopic piles to position a multi-modular very large floating structure(VLFS),which is supposed to be severed as a movable floating airport,is proposed.The telescopic piles can automatically plug in the soil to resist the environmental loads and pull out from the soil to evacuate or move on to the next operational sea.The feasibility demonstration of the conceptual design includes two parts:function verification and structure design.In the latter part of the conceptual design,a time-domain structural analysis is firstly conducted by using Abaqus software.The simulation results suggest that the preliminary structure scheme is not optimum due to the insufficient structure utilization,although both structure safety of the piles and positioning accuracy are guaranteed.To realize a cost reduction of construction and installation,a Genetic Algorithm-Finite Element Analysis(GA-FEA)method is employed to perform structural optimization.After optimization,31 percent of the weight of each pile is reduced and higher structure utilization is maintained.The difference of the self-weight and allowable buoyancy of a single module(SMOD)of a semisubmersible-type VLFS is much larger than the weight of the piles.Combined with the function verification in our previous work,the conceptual design of using the novel telescopic pile to position VLFS is demonstrated to be feasible.
文摘With the advantages on rapid construction,no limitation of extent,less influence on environment, the VLFS has been turned into the focus of coastal and offshore engineering studying.As the platform,VLFS was built as airport,huge oil house etc,and would play the role of ocean economics,politics and military.The restrictive condition of VLFS is strong wave by monsoon,seismic,serious bomb etc.The floating breakwater should be put forward to shelter VLFS.The analysis of wave condition including typhoon route,archipelago and water depth is performed in this paper.The advantage and disadvantage are compared between VLFS and the marine structure from land.
文摘In this paper a direct coupling analysis method (DCAM) of hydroelastic responses of a very large floating structures (VLFS) in complicated geographical environment is presented. In this method the three-dimensional hydroelasticity theory of floating bodies is combined with the shallow water wave theory, to allow for proper description of the influence of uneven seabed and sheltering effect of islands on the hydroelastic responses of a VLFS deployed near island and reefs in shallow sea. This method and the numerical procedures were verified and validated by comparison-between the predictions and the model test results of a 3-module VLFS and an 8-module VLFS in two simulated shallow sea regions with different seabed topography.
基金supported by the National Key R&D Program of China (No. 2022YFE0204100)the National Natural Science Foundation of China (12205067 and 12375199)the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF. 2022036)。
文摘This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.
基金financially supported by the Department of Natural Resources of Guangdong Province(Grant No.[2024]31)the National Natural Science Foundation of China(Grant No.52071145)+1 种基金the Natural Science Foundation of Guangdong Province,China(Grant No.2022B1515020071)the Fundamental Research Funds for the Central Universities(Grant No.2023ZYGXZR029).
文摘The hydroelastic behavior of a moored oil storage vessel subjected to arbitrary time-dependent external loads,which include wind,waves,and currents with different incident directions,is investigated with the time-domain modal expansion method.First,the water boundary integral equations on the body surface of a quarter model,which can be obtained via the free-surface Green’s function method,are established.Then,the time-dependent elastic deflection of the moored oil storage vessel is expressed by a superposition of modal functions and corresponding modal amplitudes,and a Galerkin scheme is applied to derive the linear system of equations for the modal amplitudes.The second-order linear differential equations for modal amplitudes are solved via the fourth-order Runge−Kutta method.The present model is validated against existing frequency domain results for a truncated cylinder and a VLFS.Numerical calculations for the moored oil storage vessel are then conducted to obtain the time series of various modal amplitudes and elastic displacements of the measurement points and the corresponding spectra with different incident directions.