An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses o...An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses on the typhoon-driven very large floating structures(VLFS)configuration of the maritime airport.The findings indicate that the proposed method enables efficient information exchange between the fluid and structure domains through the coupling interface.The displacement of the maritime airport affected by the typhoon’s wave field is mostly determined by the direction of the flow.The wave loads acting on the floating body also influence the wave profile of the irregular wave and the deformation of the floating body.The von Mises stress distribution is not significant in all parts of the floating body.展开更多
We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The ...We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.展开更多
基金supported in part by the National Natural Science Foundation of China(No.51761165022)the Natural Science Foundation of Jiangsu Province(No.BK20210309)the Jiangsu Graduate Research and Practice Innovation Program(No.KYCX21_0234)。
文摘An analysis is conducted on the hydrodynamic response law of a single module maritime airport,considering the atmospheric variables of the wind and wave field.The analysis is based on hydroelastic theory and focuses on the typhoon-driven very large floating structures(VLFS)configuration of the maritime airport.The findings indicate that the proposed method enables efficient information exchange between the fluid and structure domains through the coupling interface.The displacement of the maritime airport affected by the typhoon’s wave field is mostly determined by the direction of the flow.The wave loads acting on the floating body also influence the wave profile of the irregular wave and the deformation of the floating body.The von Mises stress distribution is not significant in all parts of the floating body.
文摘We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.