期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
顾及Vis-NIR光谱指数时序统计特征的红层荒漠化场景分类
1
作者 陈震 谢相建 +1 位作者 陈竹安 谭皓 《农业工程学报》 北大核心 2025年第9期165-174,共10页
荒漠化调查是区域土地修复、植被恢复与水土保持等农业整治工程的基础工作。而在东南丘陵区红层荒漠化的多光谱遥感监测中,仅依靠单一时相影像有限的光谱特征,难以表征和区分红层区复杂地表覆盖类型。针对该问题,该研究以湘赣北部交界... 荒漠化调查是区域土地修复、植被恢复与水土保持等农业整治工程的基础工作。而在东南丘陵区红层荒漠化的多光谱遥感监测中,仅依靠单一时相影像有限的光谱特征,难以表征和区分红层区复杂地表覆盖类型。针对该问题,该研究以湘赣北部交界的红层出露带为研究区,提出一种顾及Vis-NIR光谱指数时序统计特征的红层荒漠化场景多尺度分层分类方法。研究首先在典型地表覆盖敏感指数基础上,基于时序统计分析方法,增强红层目标与其他地物覆盖的可分性;然后结合面向对象影像分析技术和决策树分类方法,先后从像元尺度和对象尺度完成红层区纯净地物覆盖和荒漠化混合场景覆盖分类;最后与随机森林(random forest,RF)和支持向量机(support vector machine,SVM)分类模型进行对比分析。结果表明:敏感光谱指数的时序统计分析能够有效增强红层区典型覆盖场景的可分性;结合时序统计增强与面向对象空间优化的分层决策模型相较于RF和SVM两类分类模型总体分类精度提高了3.04%、3.52%;其中对裸岩的提取精确率为86.15%,召回率为89.31%,F1分数为0.88, F1分数相较于RF和SVM分别提高了4.76%和6.02%,有效地减少了裸岩错分漏分,提高了红层荒漠化场景分类精度。该研究为荒漠化遥感调查提供了一种简单有效的技术方案,也为赣西北红层荒漠化区域的土地修复等相关农业整治工作提供可靠的空间数据支持。 展开更多
关键词 遥感 决策树 特征优选 红层荒漠化 vis-nir光谱指数 时序统计 空间优化
在线阅读 下载PDF
Vis-NIR光谱模式识别结合SG平滑用于转基因甘蔗育种筛查 被引量:17
2
作者 刘桂松 郭昊淞 +2 位作者 潘涛 王继华 曹干 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第10期2701-2706,共6页
以Savitzky-Golay(SG)平滑筛选,主成分分析(PCA)分别结合有监督的线性判别分析(LDA)、无监督的系统聚类分析(HCA),应用于转基因甘蔗育种筛查的可见-近红外(Vis-NIR)无损检测。提出兼顾随机性、稳定性的定标、预测、检验框架;取田间种植... 以Savitzky-Golay(SG)平滑筛选,主成分分析(PCA)分别结合有监督的线性判别分析(LDA)、无监督的系统聚类分析(HCA),应用于转基因甘蔗育种筛查的可见-近红外(Vis-NIR)无损检测。提出兼顾随机性、稳定性的定标、预测、检验框架;取田间种植处于伸长期甘蔗叶样品456个,具有Bt基因和Bar基因的转基因样品(阳)306个,非转基因样品(阴)150个;随机选取156个为检验集(阴性50、阳性106),余下为建模集(阴性100、阳性200,共300),建模集再随机划分为定标集(阴性50、阳性100,共150)、预测集(阴性50、阳性100,共150)共50次;扩充SG平滑点数,同时删除绝对值偏小的高阶导数模式,共264个平滑模式用于模型筛选;采用前3个主成分两两组合,再根据模型效果选出最优主成分组合;基于所有定标、预测集划分和SG平滑模式,建立SG-PCA-LDA和SG-PCA-HCA模型,根据平均预测效果优选参数,使模型具有稳定性;最后用检验集进行模型检验。经SG平滑后,PCA-LDA和PCA-HCA的建模精度、稳定性均显著改善;最优SG-PCA-LDA模型阳性、阴性样品检验识别率分别达到94.3%和96.0%;最优SG-PCA-HCA模型阳性、阴性样品检验识别率分别达到92.5%和98.0%。结果表明:Vis-NIR光谱模式识别结合SG平滑可用于转基因甘蔗叶的准确识别,提供了一种简便的转基因甘蔗育种筛查方法。 展开更多
关键词 转基因甘蔗育种筛查 vis-nir光谱 SG平滑 PCA-LDA PCA-HCA
在线阅读 下载PDF
基于野外Vis-NIR光谱的土壤有机质预测与制图 被引量:21
3
作者 郭燕 纪文君 +1 位作者 吴宏海 史舟 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第4期1135-1140,共6页
利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱... 利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱。在分析吸收光谱和光谱指数与SOM关系的基础上,采用偏最小二乘回归法进行SOM的建模预测并借助地统计学方法进行SOM空间变异制图研究。结果表明,建模效果好的指标分别为特征波段(R2=0.91,RPD=3.28),归一化光谱指数(R2=0.90,RPD=3.08),特征波段与3个光谱指数组合(R2=0.87,RPD=2.67),全波段(R2=0.95,RPD=4.36)。光谱指标的克里格制图与实测SOM制图表现出相同的空间变异趋势,不同的指标均达到了较好的预测效果。 展开更多
关键词 vis-nir光谱 野外型光谱仪 土壤有机质 预测与制图 偏最小二乘回归法(PLSR) 地统计
在线阅读 下载PDF
利用OSC算法消除土壤含水量变化对Vis-NIR光谱估算有机质的影响 被引量:6
4
作者 洪永胜 于雷 +5 位作者 朱亚星 李思缔 郭力 刘家胜 聂艳 周勇 《中国农业科学》 CAS CSCD 北大核心 2017年第19期3766-3777,共12页
【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil mo... 【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil moisture,SM)、温度、土壤表面状况等因素的影响,导致光谱信息中包含大量干扰信息,其中,SM变化是影响光谱观测结果最为显著的因素之一。此研究的目的是探讨OSC算法消除其影响,提升Vis-NIR光谱定量估算土壤有机质(soil organic matter,SOM)的精度。【方法】以江汉平原公安县和潜江市为研究区域,采集217份耕层(0—20 cm)土壤样本,进行风干、研磨、过筛等处理,采用重铬酸钾-外加热法测定SOM;将总体样本划分为3个互不重叠的样本集:建模集S^0(122个样本)、训练集S^1(60个样本)、验证集S^2(35个样本);设计SM梯度试验(梯度间隔为4%),在实验室内获取S^1和S^2样本集的9个梯度SM(0%—32%)的土壤光谱数据;分析SM对土壤Vis-NIR光谱反射率的影响,采用外部参数正交化算法(external parameter orthogonalization,EPO)、正交信号校正算法(orthogonal signal correction,OSC)消除SM对土壤光谱的干扰;利用主成分分析(principal component analysis,PCA)的前两个主成分得分和光谱相关系数两种方法检验消除SM干扰前、后的效果;基于偏最小二乘回归(partial least squares regression,PLSR)方法建立EPO和OSC处理前、后的SOM估算模型,利用决定系数(coefficient of determination,R^2)、均方根误差(root mean square error,RMSE)和RPD(the ratio of prediction to deviation)3个指标比较PLSR、EPO-PLSR、OSC-PLSR模型的性能。【结果】土壤Vis-NIR光谱受SM的影响十分明显,随着SM的增加,土壤光谱反射率呈非线性降低趋势。OSC处理前的湿土光谱数据主成分得分散点相对分散,与干土光谱数据主成分得分空间的位置不重叠,不同SM梯度之间的光谱相关系数变化较大;OSC处理后的湿土光谱数据主成分得分空间的位置基本与干土光谱数据相重合,各样本光谱数据之间相似性很高,不同SM梯度之间的光谱相关系数变化较小。9个SM梯度的EPO-PLSR模型的验证平均R^2_(pre)、RPD分别为0.69、1.7。9个SM梯度的OSC-PLSR模型的验证平均R^2_(pre)、RPD分别为0.72、1.89,校正后的OSC-PLSR模型受SM的较小,有效提升SOM估算模型的精度和鲁棒性。【结论】OSC能够消除SM变化对土壤Vis-NIR光谱的影响,可为将来田间原位实时监测SOM信息提供一定的理论支撑。 展开更多
关键词 vis-nir光谱 土壤有机质 土壤含水量 正交信号校正 偏最小二乘回归 江汉平原
在线阅读 下载PDF
基于正交信号校正的Vis-NIR光谱土壤质地预测 被引量:7
5
作者 王德彩 蔚霖 +3 位作者 张俊辉 杨红震 黄家荣 孙孝林 《河南农业大学学报》 CSCD 北大核心 2017年第3期408-413,共6页
为提高基于VIS-NIR光谱的土壤质地预测精度,引入了正交信号校正(OSC)光谱预处理算法。分别用原始光谱、微分处理、OSC处理光谱,建立偏最小二乘回归(PLSR)模型。结果表明,OSC-PLSR模型验证精度高于其他两种方法所建模型,砂粒含量OSC-PLS... 为提高基于VIS-NIR光谱的土壤质地预测精度,引入了正交信号校正(OSC)光谱预处理算法。分别用原始光谱、微分处理、OSC处理光谱,建立偏最小二乘回归(PLSR)模型。结果表明,OSC-PLSR模型验证精度高于其他两种方法所建模型,砂粒含量OSC-PLSR模型的RMSEp为5.94,粘粒含量OSC-PLSR模型RMSEp为1.25,相比PLSR模型,分别降低22.22%和9.42%。OSC算法在土壤质地的VIS-NIR反演中能有效消除不相关因素的影响,提高模型预测精度。 展开更多
关键词 vis-nir光谱 土壤质地 正交信号校正 偏最小二乘回归
在线阅读 下载PDF
基于ArcGIS和Vis-NIR脐橙园土壤养分含量分布图预测研究 被引量:2
6
作者 姜小刚 王海阳 +2 位作者 郝勇 孙旭东 刘燕德 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第S1期128-129,共2页
以赣南区某脐橙园土壤为研究对象,针对不用层土壤的全氮、全磷及有机质养分信息,采用傅里叶型近红外光谱仪和可见/近红外光谱检测装置不同参数配比下组合,采集土壤样品光谱。用化学方法测定养分真值,结合光谱预处理方法和化学计量学算... 以赣南区某脐橙园土壤为研究对象,针对不用层土壤的全氮、全磷及有机质养分信息,采用傅里叶型近红外光谱仪和可见/近红外光谱检测装置不同参数配比下组合,采集土壤样品光谱。用化学方法测定养分真值,结合光谱预处理方法和化学计量学算法建立定量检测数学模型,选择出最优的仪器参数、最合适的预处理方法和算法,确定最终的数学模型。实验采样点的数量是有限的,要想得到整个研究区的养分分布数据就需要采用克里金插值法(Kriging)对这些采样点各养分进行插值,运用ArcGIS软件中的地统计分析模块功能,对采样点的土壤全氮、全磷及有机质的真实化学值和最优模型预测值进行克里金插值,得出采样区的土壤养分空间分布图。 展开更多
关键词 ARCGIS vis-nir 土壤养分 分布图 克里格插值
在线阅读 下载PDF
土壤含水量对采用Vis-NIR光谱分析土壤质地的影响 被引量:4
7
作者 王德彩 张俊辉 韩光中 《地理与地理信息科学》 CSCD 北大核心 2015年第6期52-55,共4页
Vis-NIR光谱应用于野外土壤质地分析时,其分析精度将受到土壤含水量的影响。该文旨在定量研究基于Vis-NIR光谱对土壤质地分析时,土壤含水量对精度的影响。在实验室条件下分别测定8种不同含水量状态下土壤样品(78个)的Vis-NIR光谱反射... Vis-NIR光谱应用于野外土壤质地分析时,其分析精度将受到土壤含水量的影响。该文旨在定量研究基于Vis-NIR光谱对土壤质地分析时,土壤含水量对精度的影响。在实验室条件下分别测定8种不同含水量状态下土壤样品(78个)的Vis-NIR光谱反射率,运用偏最小二乘回归(PLSR)分别建立不同含水量状态下土壤质地分析模型,每一模型分别分析8种不同含水量状态下验证集的土壤质地。结果表明,当土壤处于同一湿度状态时,各含水量状态下均可获得较好的结果,粘粒含量和砂粒含量最佳分析模型对应的含水量分别为150-200g/kg和200-250g/kg。当土壤含水量差异较大时,分析精度随着验证样本与建模样本水分含量的差异增大而急剧降低。研究认为,当土壤处于同一湿度状态时,可直接应用Vis-NIR光谱分析湿土的土壤质地,在土壤水分状态差异较大时,宜根据含水量建立分组分析模型。 展开更多
关键词 土壤质地 vis-nir光谱 土壤含水量 PLSR
在线阅读 下载PDF
基于Vis-NIR光谱的土壤质地BP神经网络预测 被引量:7
8
作者 王德彩 张俊辉 《天津农业科学》 CAS 2015年第8期6-9,共4页
为快速、准确地获取土壤质地信息,提出了应用Vis-NIR光谱结合BP神经网络的建模方法。以河南封丘县的86个土壤样本为研究对象,以原始光谱和微分光谱主成分为输入变量,建立土壤粘粒和砂粒的BP神经网络预测模型,并将其预测结果与多元线性... 为快速、准确地获取土壤质地信息,提出了应用Vis-NIR光谱结合BP神经网络的建模方法。以河南封丘县的86个土壤样本为研究对象,以原始光谱和微分光谱主成分为输入变量,建立土壤粘粒和砂粒的BP神经网络预测模型,并将其预测结果与多元线性逐步回归模型进行比较。结果表明:基于原始光谱主成分的BP人工神经网络预测结果最好,优于多元逐步回归模型,预测粘粒和砂粒的RMSE分别为1.62和6.52。BP神经网络所建模型训练时间短、准确度也较高,能实现对土壤质地的高效预测。 展开更多
关键词 vis-nir光谱 BP神经网络 主成分分析 土壤质地
在线阅读 下载PDF
基于灰色关联度和Vis-NIR的不同贮藏方式下番茄光谱特性分析 被引量:2
9
作者 宋海燕 王世芳 +1 位作者 谌英敏 苏勤 《山西农业大学学报(自然科学版)》 CAS 北大核心 2019年第2期75-78,共4页
[目的]确定不同贮藏方式下,影响番茄样本定性判别的主要品质指标。[方法]本文采用可见近红外光谱技术分析了不同贮藏方式下番茄的光谱特性;引入主成分分析和灰色关联度分析方法对不同贮藏方式的番茄样本进行定性判别和贡献指标确定。[结... [目的]确定不同贮藏方式下,影响番茄样本定性判别的主要品质指标。[方法]本文采用可见近红外光谱技术分析了不同贮藏方式下番茄的光谱特性;引入主成分分析和灰色关联度分析方法对不同贮藏方式的番茄样本进行定性判别和贡献指标确定。[结果]不同贮藏方式下番茄的光谱特性有所不同,可用主成分分析提取的3个敏感波段1 927、1 401、1 222 nm(累积贡献率为98.92%)对其进行区分;与1 927 nm吸光度值关联度最大的为可滴定酸,与1 401 nm吸光度值关联度最大的为可溶性固形物,与1 222 nm吸光度值关联度最大的为可滴定酸。[结论]可滴定酸和可溶性固形物是影响其主成分分析的主要品质指标,也是影响上述不同贮藏方式下番茄样本分类的指标。该研究可为后续基于光谱技术的不同贮藏方式下番茄品质快速检测提供依据。 展开更多
关键词 vis-nir 灰色关联度 主成分分析 番茄 贮藏方式
在线阅读 下载PDF
基于Vis-NIR光谱的不同水分状态下土壤有机质预测
10
作者 王德彩 张俊辉 黄家荣 《河南农业大学学报》 CAS CSCD 北大核心 2015年第3期331-334,342,共5页
以河南省封丘县的86个土壤样本为研究对象,测定9种不同含水量状态下的土壤光谱反射率,运用偏最小二乘回归(PLSR)建立不同含水量状态下的土壤有机质预测模型;运用0-50 g·kg^-1,200-250 g·kg^-1,400-450 g·kg^-1水分状态... 以河南省封丘县的86个土壤样本为研究对象,测定9种不同含水量状态下的土壤光谱反射率,运用偏最小二乘回归(PLSR)建立不同含水量状态下的土壤有机质预测模型;运用0-50 g·kg^-1,200-250 g·kg^-1,400-450 g·kg^-1水分状态下3组模型进行交互预测,以研究含水量状态差异较大情况下,土壤含水量对有机质预测精度的影响。结果显示,建模样本与预测样本处于同一含水量状态下,土壤含水量对土壤有机质含量预测精度的影响不显著;当验证集样本与建模集样本间水分状态差异较大时,预测结果会出现较大误差。当土壤处于同一湿度状态时,可直接应用Vis-NIR光谱预测湿土的有机质;当土壤样本间水分差异较大时,可依据含水量状态建立分组模型,以提高Vis-NIR光谱预测有机质的精度。 展开更多
关键词 土壤有机质 vis-nir光谱 土壤含水量 PLSR
在线阅读 下载PDF
基于vis-NIR光谱的Bootstrap-PLSR模型进行SOM预测精度评价 被引量:1
11
作者 杨梅花 徐强 赵小敏 《江西农业大学学报》 CAS CSCD 北大核心 2019年第6期1227-1234,共8页
土壤有机质(SOM)是土壤肥力重要指标之一。快速,无损且准确地预测SOM含量对于保护和提升土壤肥力有重要作用。可见-近红外(vis-NIR)光谱结合偏最小二乘回归(PLSR)模型在土壤属性估测中广泛使用,目的是探讨通过Bootstrap抽样提高PLSR的... 土壤有机质(SOM)是土壤肥力重要指标之一。快速,无损且准确地预测SOM含量对于保护和提升土壤肥力有重要作用。可见-近红外(vis-NIR)光谱结合偏最小二乘回归(PLSR)模型在土壤属性估测中广泛使用,目的是探讨通过Bootstrap抽样提高PLSR的预测能力和泛化能力。以江西、浙江和湖南三省水稻土为研究对象,采集了523个耕层(0~20 cm)土壤样本,比较偏最小二乘回归(PLSR)和Bootstrap-PLSR两种回归模型在估测SOM的精度和泛化能力;利用确定系数(R^2),均方根误差(RMSE)和性能指标(RPIQ,标准差与四分位间距离的比值)来评估预测的准确度,利用Bootstrap抽样后预测值的95%置信区间和实测值的分布情况、欠拟合和过拟合PLSR和Bootstrap-PLSR回归因子的差异来分析Bootstrap-PLSR模型的泛化能力和稳定性。研究表明:使用Bootstrap-PLSR预测的SOM含量的预测精度(R^2=0.76,RMSE=5.82,RPIQ=2.51)高于PLSR模型(R^2=0.72,RMSE=6.27,RPIQ=2.33)。Bootstrap抽样能够提高SOM含量中间部分的预测精度并且具有较强的建模稳定性,Bootstrap-PLSR具有较强的泛化能力且可以用来选择特征波段。 展开更多
关键词 Bootstrap抽样 偏最小二乘回归 vis-nir光谱技术 水稻土 有机质
在线阅读 下载PDF
Estimating purple-soil moisture content using Vis-NIR spectroscopy 被引量:6
12
作者 GOU Yu WEI Jie +3 位作者 LI Jin-lin HAN Chen TU Qing-yan LIU Chun-hong 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2214-2223,共10页
Soil moisture is essential for plant growth in terrestrial ecosystems.This study investigated the visible-near infrared(Vis-NIR)spectra of three subgroups of purple soils(calcareous,neutral,and acidic)from western Cho... Soil moisture is essential for plant growth in terrestrial ecosystems.This study investigated the visible-near infrared(Vis-NIR)spectra of three subgroups of purple soils(calcareous,neutral,and acidic)from western Chongqing,China,containing different water contents.The relationship between soil moisture and spectral reflectivity(R)was analyzed using four spectral transformations,and estimation models were established for estimating the soil moisture content(SMC)of purple soil based on stepwise multiple linear regression(SMLR)and partial least squares regression(PLSR).We found that soil spectra were similar for different moisture contents,with reflectivity decreasing with increasing moisture content and following the order neutral>calcareous>acidic purple soil(at constant moisture content).Three of the four spectral transformations can highlight spectral sensitivity to SMC and significantly improve the correlation between the reflectance spectra and SMC.SMLR and PLSRmethods provide similar prediction accuracy.The PLSR-based model using a first-order reflectivity differential(R?)is more effective for estimating the SMC,and gave coefficient of determination(v2),root mean square errors of validation(RMSEV),and ratio of performance to inter-quartile distance(RPIQ)values of 0.946,1.347,and 6.328,respectively,for the calcareous purple soil,and 0.944,1.818,and 6.569,respectively,for the acidic purple soil.For neutral purple soil,the best prediction was obtained using the SMLR method with R?transformation,yieldingv2,RMSEV and RPIQ values of 0.973,0.888 and 8.791,respectively.In general,PLSR is more suitable than SMLR for estimating the SMC of purple soil. 展开更多
关键词 Purple soil Soil moisture vis-nir spectroscopy Stepwise multiple linear regression Partial least squares regression
原文传递
Estimating the Texture of Purple Soils Using Vis-NIR Spectroscopy and Optimized Conversion Models
13
作者 Baina Chen Jie Wei +2 位作者 Qiang Tang Yu Gou Chunhong Liu 《Agricultural Sciences》 CAS 2023年第2期202-218,共17页
Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measureme... Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measurement are time-consuming and labor-intensive. This study attempts to explore an indirect method for rapid estimating the texture of three subgroups of purple soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were collected from sloping croplands in Tongnan and Beibei Districts of Chongqing Municipality in China. Vis-NIR spectrum was measured and processed, and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and back propagation neural network (BPNN) models were constructed to inform the soil texture. The clay fractions ranged from 4.40% to 27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For the original spectrum, the texture of calcareous and neutral purple soils was not significantly correlated with spectral reflectance and linear models (SMLR and PLSR) exhibited low prediction accuracy. The correlation coefficients and the goodness-of-fits between soil texture and the transformed spectra of all soil groups increased by continuum-removal (CR), first-order differential (R'), and second-order differential (R") transformations. Among them, the R" had the best performance in terms of improving the correlation coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR exceeds PLSR and BPNN with a higher coefficient of determination (R<sup>2</sup>) and the ratio of performance to inter-quartile distance (RPIQ) values and lower root mean square error of validation (RMSEV), but for the neutral and acidic purple soils, the PLSR model has a better prediction accuracy. In summary, the linear methods (SMLR and PLSR) are more reliable in estimating the texture of the three purple soil groups when using Vis-NIR spectroscopy inversion. 展开更多
关键词 Soil Texture vis-nir Spectra Stepwise Multiple Linear Regression Partial Least Squares Regression Backpropagation Neural Network
在线阅读 下载PDF
Modeling method for SSC prediction in pomelo using Vis-NIRS with wavelength selection and latent variable updating 被引量:1
14
作者 Hao Tian Shuai Wang +1 位作者 Huirong Xu Yibin Ying 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第1期251-260,共10页
The aim of this study was in-line,rapid,and non-destructive detection for soluble solid content(SSC)in pomelos using visible and near-infrared spectroscopy(Vis-NIRS).However,the large size and thick rind of pomelo aff... The aim of this study was in-line,rapid,and non-destructive detection for soluble solid content(SSC)in pomelos using visible and near-infrared spectroscopy(Vis-NIRS).However,the large size and thick rind of pomelo affect the stability of spectral acquisition and the biological variabilities affect the robustness of models.Given these issues,in this study,an efficient prototype in-line detection system in transmittance mode was designed and evaluated in comparison with an off-line detection system.Data from the years 2019 and 2020 were used for modeling and the external validation data were obtained by the inline detection system in 2021.The wavelength selection methods of changeable size moving window(CSMW),random frog(RF),and competitive adaptive reweighted sampling(CARS)were used to improve the prediction accuracy of partial least squares regression(PLSR)models.The best performance of internal prediction was obtained by CARS-PLSR and the determination coefficient of prediction(),root mean square error of prediction(RMSEP),and residual predictive deviation(RPD)were 0.958,0.204%,and 4.821,respectively.However,all models obtained large prediction biases in external validation.The latent variable updating(LVU)method was proposed to update models and improve the performance in external validation.Ten samples from the external validation set were randomly selected to update the models.Compared with the recalibration method,LVU could effectively modify the original models which matched the SSC range of the external validation set.The CSMW-PLSR models were more robust in external validations.The off-line model with LVU performed best with a root mean square error of validation(RMSEV)of 0.599%and the in-line model with recalibration obtained RMSEV of 0.864%.These results demonstrated the application potential of the transmittance Vis-NIRS for in-line rapid prediction of SSC in pomelos and the modeling and updating methods could be applied to samples with biological variabilities. 展开更多
关键词 vis-nirS in-line detection external validation wavelength selection model updating POMELO SSC
原文传递
基于可见光-近红外高光谱成像技术的文书朱墨时序检验 被引量:1
15
作者 李昌盛 高树辉 《分析测试学报》 北大核心 2025年第5期781-793,共13页
刑事文书检验领域中,文字墨迹与印章印文形成时序的分析是验证文书物证真伪的关键技术。该文基于可见光-近红外高光谱成像技术(Vis-NIR HSI)图谱合一优势,结合卷积神经网络(CNN)研究了朱墨时序的判别问题。在光谱影像形态分析的基础上,... 刑事文书检验领域中,文字墨迹与印章印文形成时序的分析是验证文书物证真伪的关键技术。该文基于可见光-近红外高光谱成像技术(Vis-NIR HSI)图谱合一优势,结合卷积神经网络(CNN)研究了朱墨时序的判别问题。在光谱影像形态分析的基础上,采集了42000个不同朱墨时序样品的高光谱数据,建立朱墨时序高光谱数据集。分别使用中值滤波、Savitzky-Golay平滑滤波、多元散射校正和归一化方法对样本光谱进行预处理;采用连续投影算法(SPA)和竞争自适应重加权采样(CARS)对光谱进行特征波长选择,分别建立逻辑回归(LR)等若干二分类机器学习模型和一维卷积神经网络(1D-CNN)模型,并比较了建模效果。实验结果显示,基于CARS方法提取的光谱特征波长建立的CARS-1D-CNN模型在训练集和测试集上的准确率分别达96.98%和95.54%,表明Vis-NIR HSI与1D-CNN结合能够有效识别朱墨时序。该方法与常规检验方法相互辅助、相互验证,能够提高朱墨时序检验鉴定的准确性和效率。 展开更多
关键词 可见光-近红外高光谱成像(vis-nir HSI) 文件检验 朱墨时序 机器学习 1D-CNN
在线阅读 下载PDF
基于可见-近红外光谱技术快速检测水质酸度
16
作者 苏涵君 李丽娜 《理化检验(化学分册)》 北大核心 2025年第3期249-256,共8页
为了满足快速、准确、在线持续检测水质酸度(pH)的需求,基于可见-近红外光谱(Vis-NIRS)技术,结合化学计量学方法,提出了一种水质酸度的快速检测方法。采集60个不同酸度水溶液样本的Vis-NIRS原始数据,分别采用Kennard-Stone(K-S)算法和光... 为了满足快速、准确、在线持续检测水质酸度(pH)的需求,基于可见-近红外光谱(Vis-NIRS)技术,结合化学计量学方法,提出了一种水质酸度的快速检测方法。采集60个不同酸度水溶液样本的Vis-NIRS原始数据,分别采用Kennard-Stone(K-S)算法和光谱-理化值共生距离(SPXY)算法进行样本集划分,运用Savitzky-Golay(S-G)卷积平滑、标准正态变量变换(SNV)、一阶导数(1D)、二阶导数(2D)和正交信号校正(OSC)等方法对原始光谱数据进行预处理,并使用连续投影算法(SPA)、竞争性自适应重加权(CARS)算法进行特征波长筛选,建立并比较了不同的偏最小二乘法(PLS)定量分析模型,以确定最佳模型效果。结果表明,利用SPXY算法划分样本集,并经过SNV预处理和CARS筛选出特征波长,建立的水质酸度PLS定量分析模型性能较优,其预测集决定系数和预测均方根误差分别为0.9786和0.3803。参与建模的波长变量数由2860个减少至45个,极大地提高了模型的运算速率,方法能够实现对水质酸度的快速、准确检测。 展开更多
关键词 可见-近红外光谱(vis-nirS) 水质酸度 预处理 竞争性自适应重加权算法 偏最小二乘法(PLS) 定量分析模型
在线阅读 下载PDF
基于野外实测Vis-NIR光谱的土壤肥力估算研究——以湟水流域为例 被引量:6
17
作者 胡亚男 高小红 +1 位作者 申振宇 肖云飞 《土壤通报》 CAS CSCD 北大核心 2021年第3期575-584,共10页
为探讨野外实测光谱数据对土壤肥力的估算能力,采集青海省湟水流域表层0~20 cm土壤样品220份,同步测量其采样位置的野外实测光谱数据,实验室对土壤养分、机械组成含量以及pH值进行分析。基于上述数据,对野外实测光谱反射率进行多元散射... 为探讨野外实测光谱数据对土壤肥力的估算能力,采集青海省湟水流域表层0~20 cm土壤样品220份,同步测量其采样位置的野外实测光谱数据,实验室对土壤养分、机械组成含量以及pH值进行分析。基于上述数据,对野外实测光谱反射率进行多元散射校正(Multiplicative scatter correction,MSC)、SG-一阶导数变换(SG-First Derivative,SG-1st)预处理,采用稳定性竞争自适应重加权采样法(stability competitive adaptive reweighted sampling,SCARS)提取不同土壤养分、机械组成含量以及pH值的特征波段,以偏最小二乘回归(partial least squares regression,PLSR)模型对土壤全碳(TC)、有机质(OM)、全氮(TN)、碱解氮(AN)、pH、黏粒(clay)、粉粒(silt)、砂粒(sand)含量进行估算并对比分析,构建土壤养分含量、pH值以及机械组成含量的最优野外实测光谱估算模型。结果表明:通过MSC校正和SG-1st变换能够有效增强野外光谱特征;经SCARS选取的特征波段主要集中于近红外波段。基于野外实测光谱数据建立的PLSR模型能够对研究区土壤TC、OM、TN、AN含量以及pH值进行粗略估算;其中,对于TC、OM、TN含量及pH值而言,最佳估算模型为经SG-1st处理后的SCARS-PLSR模型,RPD值均达到1.70以上(RPD_(TC)=1.76;RPD_(OM)=1.82;RPD_(TN)=2.04;RPD_(pH)=1.89),RPIQ值均达到1.90以上(RPIQ_(TC)=1.91;RPIQ_(OM)=2.53;RPIQ_(TN)=2.98;RPIQ_(pH)=2.03);对于土壤AN含量而言,经MSC处理后的SCARS-PLSR模型最佳,其RPDAN值高达1.91,RPIQ值高达2.39。对土壤clay、silt以及sand含量野外光谱均无法估算,RPD值均在1.00左右,RPIQ值在1.20左右。 展开更多
关键词 野外实测vis-nir光谱 土壤肥力属性 特征波段 偏最小二乘模型 湟水流域
原文传递
Construction of n-TiO_(2)/p-Ag_(2)O Junction on Carbon Fiber Cloth with Vis-NIR Photoresponse as a Filter-Membrane-Shaped Photocatalyst 被引量:3
18
作者 Gumila Duoerkun Yan Zhang +6 位作者 Zhun Shi Xiaofeng Shen Wei Cao Ting Liu Jianshe Liu Quanyuan Chen Lisha Zhang 《Advanced Fiber Materials》 CAS 2020年第1期13-23,共11页
The development of effective and reusable photocatalysts with broad-spectra activity has attracted attention.Herein,we have constructed n-TiO_(2)/p-Ag_(2)O junction on carbon fiber(CF)cloth as an efficient and recycla... The development of effective and reusable photocatalysts with broad-spectra activity has attracted attention.Herein,we have constructed n-TiO_(2)/p-Ag_(2)O junction on carbon fiber(CF)cloth as an efficient and recyclable photocatalyst.With CF cloth as the substrate,TiO_(2) nanorods(length:1-2μm)are prepared by a hydrothermal process,and the in-situ growth of Ag_(2)O nanoparticles(10-20 nm)is then realized by chemical bath deposition route.The flexible CF/TiO_(2)/Ag_(2)O cloth(area:4×4 cm^(2))shows a broad and strong photo-absorption(200-1000 nm).Under the illumination of visible-light(λ>400 nm),CF/TiO_(2)/Ag_(2)O cloth can efficiently eliminate 99.2%rhodamine B(RhB),99.4%acid orange 7(AO7),87.6%bisphenol A(BPA),and 89.5%hexavalent chromium(Cr^(6+))in 100 min,superior to CF/Ag_(2)O cloth(83.5%RhB,60.0%AO7,31.2%BPA and 41.8%Cr^(6+)).In particular,under the NIR-light illumination(980 nm laser),CF/TiO_(2)/Ag_(2)O cloth can remove 70.9%AO7 and 60.0%Cr^(6+) in 100 min,which are significantly higher than those by CF/Ag_(2)O cloth(19.8%AO7 and 18.9%Cr^(6+)).In addition,CF/TiO_(2)/Ag_(2)O cloth(diameter:10 cm),as a filter-membrane,can effectively wipe off 94.4%flowing RhB solution(rate:~1 L h^(−1))at 6th filtering/degrading grade.Thus,CF/TiO_(2)/Ag_(2)O cloth can be used as a Vis-NIR-responded filter-membrane-shaped photocatalyst with high-efficiency for purifying wastewater. 展开更多
关键词 Carbon fiber cloth n-TiO_(2)/p-Ag_(2)O junction vis-nir photoresponse PHOTOCATALYST Filter-membrane
原文传递
Lateral organic-inorganic hybrid Vis-NIR photodetectors based on GaN nanowires promoting photogenerated carriers transfer
19
作者 Tao Han Zexin Wu +6 位作者 Zhilong Deng Xiaofeng Zhang Sidi Yang Cuicui Chen Jiajia Zhu Shufang Ding Chunzhi Jiang 《Journal of Materiomics》 SCIE 2022年第4期806-814,共9页
The narrow bandgap of the low-energy near-infrared(NIR)polymer would lead to overlap between adjacent energy levels,which is a major barrier to the preparation of Vis-NIR polymer bulk hetero-junction(BHJ)photodetector... The narrow bandgap of the low-energy near-infrared(NIR)polymer would lead to overlap between adjacent energy levels,which is a major barrier to the preparation of Vis-NIR polymer bulk hetero-junction(BHJ)photodetectors with small responsivity and photocurrent.In this study,a high-performance lateral inorganic-organic hybrid photodetector was constructed to eliminate this barrier by combining GaN nanowires(GaN-NWs)with PDPP3T:PC61BM-based BHJ.In stage one,high-quality GaN-NWs were synthesized by the catalyst-free CVD method.The mechanism for controlling GaN-NWs morphology by adjusting the NH3 flow rate was revealed.In stage two,the GaN-NWs with large electron mobility were used to accelerate the transfer of photogenerated carriers in the BHJ layer.Finally,compared with the BHJ device,the BHJ/GaN device demonstrated obvious improvements in responsivity and photocurrent at the wavelength between 400 and 1000 nm.The responsivity and photocurrent increased over 20-fold at the NIR band of 800e900 nm.Besides,owing to the energy level gradient effect,the BHJ/GaN device has a response speed of 7.8/<5.0 ms,which increases over three orders of magnitude than that of the GaN-NWs-based device(tr/tf:7.1/10.9 s).Therefore,the novel device structure proposed in this work holds great potential for preparing high-performance Vis-NIR photodetectors. 展开更多
关键词 vis-nir photodetectors Lateral photodetectors GaN nanowires Bulk heterojunction Organic-inorganic hybrid Organic materials
原文传递
Rapidly and mildly transferring anatase phase of graphene-activated TiO2 to rutile with elevated Schottky barrier:Facilitating interfacial hot electron injection for Vis-NIR driven photocatalysis
20
作者 Weiyao Hu Qiyuan Li +7 位作者 Dong Xu Guangyao Zhai Shinan Zhang Dong Li Xiaoxiao He Jinping Jia Jiesheng Chen Xinhao Li 《Nano Research》 SCIE EI CSCD 2022年第12期10142-10147,共6页
Visible and even infrared(IR)light-initiated hot electrons of graphene(Gr)catalysts are a promising driven power for green,safe,and sustainable H2O2 synthesis and organic synthesis without the limitation of bandgap-do... Visible and even infrared(IR)light-initiated hot electrons of graphene(Gr)catalysts are a promising driven power for green,safe,and sustainable H2O2 synthesis and organic synthesis without the limitation of bandgap-dominated narrow light absorption to visible light confronted by conventional photocatalyst.However,the life time of photogenerated hot electrons is too short to be efficiently used for various photocatalytic reactions.Here,we proposed a straightforward method to prolong the lifetime of photogenerated hot electrons from graphene by tuning the Schottky barrier at Gr/rutile interface to facilitate the hot electron injection.The rational design of Gr-coated TiO2 heterojunctions with interface synergy-induced decrease in the formation energy of the rutile phase makes the phase transfer of TiO2 support proceed smoothly and rapidly via ball milling.The optimized Gr/rutile dyad could provide a H2O2 yield of 1.05 mM·g-1·h-1 under visible light irradiation(λ≥400 nm),which is 30 times of the state-of-the-art noble-metal-free titanium oxide-based photocatalyst,and even achieves a H2O2 yield of 0.39 mM·g-1·h-1 on photoexcitation by near-infrared-region light(~800 nm). 展开更多
关键词 hot electrons phase transition Schottky barrier heterojunction catalyst visible-near infrared ray(vis-nir)driven photocatalysis
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部