期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进VGGNet模型的外来入侵植物叶片识别方法 被引量:7
1
作者 原忠虎 王维 苏宝玲 《计算机与现代化》 2021年第9期7-11,共5页
针对自然界中不同种类植物的叶片可能存在类间差异小而导致一些边缘轮廓相似的本土植物和外来入侵植物叶片识别错误的问题,提出一种PF-VGGNet模型。常用的VGGNet模型在图像分类上表现优秀,采用顺次连接的结构,可以很好地提取图像的高级... 针对自然界中不同种类植物的叶片可能存在类间差异小而导致一些边缘轮廓相似的本土植物和外来入侵植物叶片识别错误的问题,提出一种PF-VGGNet模型。常用的VGGNet模型在图像分类上表现优秀,采用顺次连接的结构,可以很好地提取图像的高级语义信息特征,但一些图像浅层的轮廓和纹理特征也对分类起到关键作用。PF-VGGNet模型可以将浅层轮廓和纹理特征与网络深层高级语义信息融合,实现对植物叶片的自动识别。实验结果表明,PF-VGGNet模型对比其它算法在自建的外来入侵植物叶片数据集上取得了较好的识别效果,在训练集和测试集上的准确率分别为99.89%和99.63%。PF-VGGNet可以有效降低因叶片边缘轮廓相近导致识别错误的问题,能够快速识别外来入侵植物叶片,为防治外来植物入侵提供支持。 展开更多
关键词 植物叶片识别 卷积神经网络 vggnet模型 金字塔特征输入
在线阅读 下载PDF
基于卷积网络的沙漠腹地绿洲植物群落自动分类方法 被引量:16
2
作者 尼加提.卡斯木 师庆东 +2 位作者 刘素红 比拉力.依明 李浩 《农业机械学报》 EI CAS CSCD 北大核心 2019年第1期217-225,共9页
为解决沙漠腹地绿洲遥感图像植物群落背景较易混淆,仅用传统的基于像元光谱信息的图像处理方法未能充分利用其图像特征信息,使得提取效果不佳的问题,针对地物类内特征复杂、类间边界模糊的特点,以连续分布的区域为研究对象,提出了一种... 为解决沙漠腹地绿洲遥感图像植物群落背景较易混淆,仅用传统的基于像元光谱信息的图像处理方法未能充分利用其图像特征信息,使得提取效果不佳的问题,针对地物类内特征复杂、类间边界模糊的特点,以连续分布的区域为研究对象,提出了一种基于深度卷积神经网络(Convolutional neural network,CNN)的高分辨率遥感影像植物群落自动分类方法。切分无人机影像获得规则块图像,利用基于CNN的VGGNet和Res Net模型分别对块图像的特征进行抽象与学习,以自动获取更加深层抽象、更具代表性的图像块深层特征,从而实现对植物群落分布区域的提取,以原图像与结果图像叠加的形式输出植物群落自动分类结果。采用了不同梯度的样本数量作为训练样本,利用文中提出的方法分析了不同梯度的训练样本数量对自动分类结果的影响。实验结果表明,训练样本数量对分类精度具有明显的影响;提高其泛化能力后,Res Net50模型与VGG19模型的建模精度从86. 00%、83. 33%分别提升到92. 56%、90. 29%; Res Net50模型分类精度为83. 53%~91. 83%,而VGG19模型分类精度为80. 97%~89. 56%,与传统的监督分类方法比较,深度卷积网络明显提高了分类精度。分类结果表明,训练样本数量不低于200时,基于CNN的Res Net50模型表现出最佳的分类结果。 展开更多
关键词 沙漠腹地 植物群落 自动分类 CNN深度卷积网络 vggnet模型 ResNet模型
在线阅读 下载PDF
卷积神经网络在航测图像自动识别中的应用探讨
3
作者 孙健飞 王占岗 陶恩海 《现代测绘》 2023年第5期48-52,共5页
针对无人机航测影像的目标识别问题,结合目前已有相关开发语言及模型,探讨在航测内业采集过程中加入人工智能识别技术实现地物自动识别和绘制的可行性。首先,分析近年来计算机图像识别方面的人工智能模型,结合航空影像固有特性,通过研... 针对无人机航测影像的目标识别问题,结合目前已有相关开发语言及模型,探讨在航测内业采集过程中加入人工智能识别技术实现地物自动识别和绘制的可行性。首先,分析近年来计算机图像识别方面的人工智能模型,结合航空影像固有特性,通过研究识别后与已有绘图软件交互。其次,设计了一组基于经典卷积神经网络的航测影像自动识别实验。结果表明,VGG16模型能够有效提升高分辨率和复杂背景的航拍图像的识别准确率,在较小目标(如路灯等)的识别准确率较低。以此给出输入图像精细化预处理、原数据集数据增强与多次迭代、构建具有双重损失函数的糅合模型3个方面的改进措施,为后续进一步的研究确定了方向。 展开更多
关键词 卷积神经网络CNN VGG-NET模型 航测 内业采集 目标检测
在线阅读 下载PDF
卷积神经网络金相组织自动识别 被引量:5
4
作者 王佳锐 刘能锋 曲鹏 《智能系统学报》 CSCD 北大核心 2022年第4期698-706,共9页
为了降低人工分辨金相组织图像类别的误差率,提高分辨效率,采用卷积神经网络模型对金相组织图像进行自动辨识。对制备金相样块所得铁素体与马氏体两种金相组织图像进行分析,提出符合金相组织图像分布特征的预处理方案。通过采用图像尺... 为了降低人工分辨金相组织图像类别的误差率,提高分辨效率,采用卷积神经网络模型对金相组织图像进行自动辨识。对制备金相样块所得铁素体与马氏体两种金相组织图像进行分析,提出符合金相组织图像分布特征的预处理方案。通过采用图像尺寸归一化、灰度值归一化以及高斯平滑处理等方法,对原始金相组织图像进行预处理,建立金相组织图像数据集。针对建立的铁素体和马氏体金相组织图像数据集,提出了适合金相组织图像辨识的改进模型,分别记为LeNet-MetStr模型、AlexNet-MetStr模型和VGGNet-MetStr模型。对3种改进卷积神经网络进行模型训练及分析,结果表明VGGNet-MetStr模型对2种金相组织图像自动辨识具有更高的准确度。 展开更多
关键词 卷积神经网络 金相组织 图像处理 网络模型 自动辨识 LeNet神经网络 AlexNet神经网络 vggnet神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部