期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于优化的VGG-16网络模型的煤矸识别研究 被引量:2
1
作者 黄可 樊玉萍 +1 位作者 董宪姝 马晓敏 《矿业研究与开发》 CAS 北大核心 2024年第9期219-226,共8页
针对复杂工况下煤矸识别效率低、分选难度大的问题,采用VGG-16网络搭建煤矸识别模型,对煤矸识别模型的识别准确率和识别环境影响因素进行了研究,并对VGG-16煤矸识别模型进行了优化。结果表明:(1)优化后的VGG-16网络模型准确率为97.00%,... 针对复杂工况下煤矸识别效率低、分选难度大的问题,采用VGG-16网络搭建煤矸识别模型,对煤矸识别模型的识别准确率和识别环境影响因素进行了研究,并对VGG-16煤矸识别模型进行了优化。结果表明:(1)优化后的VGG-16网络模型准确率为97.00%,单张煤矸图像识别时间为0.0697s,单张煤矸图像识别所用时间缩短了0.85%;(2)在不同水分、灰分和粉尘等环境因素下,煤矸识别模型的准确率均达到95%以上,其中水分对模型的识别准确率影响最大,表面浸润30 s比干燥的识别准确率低2.01个百分点;(3)鉴于煤与矸石的共伴生特性,对煤表面夹矸、矸表面带煤两种复杂情况进行了煤矸有效识别。研究表明:优化后的VGG-16网络模型具有一定的抗干扰能力,可以实现复杂情况下煤矸的高效精准识别,可为后续煤矸石智能化分选提供理论基础和技术支撑。 展开更多
关键词 煤矸识别 vgg-16网络模型 识别准确率 环境因素
原文传递
Deep Convolution Neural Networks for Image-Based Android Malware Classification
2
作者 Amel Ksibi Mohammed Zakariah +1 位作者 Latifah Almuqren Ala Saleh Alluhaidan 《Computers, Materials & Continua》 2025年第3期4093-4116,共24页
The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the ... The analysis of Android malware shows that this threat is constantly increasing and is a real threat to mobile devices since traditional approaches,such as signature-based detection,are no longer effective due to the continuously advancing level of sophistication.To resolve this problem,efficient and flexible malware detection tools are needed.This work examines the possibility of employing deep CNNs to detect Android malware by transforming network traffic into image data representations.Moreover,the dataset used in this study is the CIC-AndMal2017,which contains 20,000 instances of network traffic across five distinct malware categories:a.Trojan,b.Adware,c.Ransomware,d.Spyware,e.Worm.These network traffic features are then converted to image formats for deep learning,which is applied in a CNN framework,including the VGG16 pre-trained model.In addition,our approach yielded high performance,yielding an accuracy of 0.92,accuracy of 99.1%,precision of 98.2%,recall of 99.5%,and F1 score of 98.7%.Subsequent improvements to the classification model through changes within the VGG19 framework improved the classification rate to 99.25%.Through the results obtained,it is clear that CNNs are a very effective way to classify Android malware,providing greater accuracy than conventional techniques.The success of this approach also shows the applicability of deep learning in mobile security along with the direction for the future advancement of the real-time detection system and other deeper learning techniques to counter the increasing number of threats emerging in the future. 展开更多
关键词 Android malware detection deep convolutional neural network(DCNN) image processing CIC-AndMal2017 dataset exploratory data analysis VGG16 model
在线阅读 下载PDF
基于改进VGG-16模型的英文笔迹鉴别方法 被引量:7
3
作者 何凯 马红悦 +1 位作者 冯旭 刘坤 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第9期984-990,共7页
笔迹鉴别是通过对待测文本和样本笔迹的相似度进行比较,来判定笔迹是否相同的一种检验技术,其在司法鉴定、法庭科学以及金融领域合同确认等多个领域都有广泛的应用.传统英文笔迹鉴别方法是通过比对被鉴别文本与模板的相似程度来实现,效... 笔迹鉴别是通过对待测文本和样本笔迹的相似度进行比较,来判定笔迹是否相同的一种检验技术,其在司法鉴定、法庭科学以及金融领域合同确认等多个领域都有广泛的应用.传统英文笔迹鉴别方法是通过比对被鉴别文本与模板的相似程度来实现,效率低,准确度差.近年来,随着深度神经网络技术的飞速发展,利用其自主学习的优势提取相关特征,可以大大提高笔迹鉴别的准确率.传统VGG-16模型在图像分类上一直表现良好,但由于网络结构一直采用顺次连接的方式,导致训练时间过长,参数调整难度大,且不能很好地提取图像的细微特征,因此对笔迹鉴定的效果不够理想.本文通过对传统VGG-16卷积神经网络模型进行改进,提出了一种CC-VGG网络模型,利用复合卷积层替换部分卷积层,实现了手写体英文笔迹的自动鉴别.在公开的CVL和ICDAR2013数据集上,该模型取得了较好的鉴别效果,平均正确率分别达到92.7%和86.9%,与现有算法相比准确率均有所提高.此外,建立了一个包含130类、共26000张图片的手写英文笔迹图像数据集EI130,在该数据集上该模型也取得了较高的准确率.与其他算法的对比实验证明了本文算法在训练时间上具有优越性;此外,在多个数据集上的实验结果也证明了本文算法的有效性和先进性. 展开更多
关键词 手写体笔迹鉴别 卷积神经网络 vgg-16模型 复合卷积
在线阅读 下载PDF
基于微调VGG-16的现场鞋印检索算法 被引量:4
4
作者 史文韬 唐云祁 《中国人民公安大学学报(自然科学版)》 2020年第3期22-29,共8页
鞋印是刑事案件中出现率最高的痕迹物证[1],通过检索现场鞋印进而确定鞋样能够获得有关嫌疑人身份和犯罪特点的重要信息。近年来研究人员逐渐把深度学习的相关方法应用到鞋印检索上,但目前大多数基于深度学习的鞋印检索算法都直接使用... 鞋印是刑事案件中出现率最高的痕迹物证[1],通过检索现场鞋印进而确定鞋样能够获得有关嫌疑人身份和犯罪特点的重要信息。近年来研究人员逐渐把深度学习的相关方法应用到鞋印检索上,但目前大多数基于深度学习的鞋印检索算法都直接使用预训练的卷积神经网络提取特征,并未微调再训练,也没有设计并训练新的网络模型。提出一种基于微调VGG-16的现场鞋印检索算法。首先建立一个432类共2827幅图片的鞋印数据集,并进一步增广到228987幅图像。然后使用该数据集微调ILSVRC数据集预训练的VGG-16模型,并将该模型作为鞋印特征提取器。实验结果显示,与使用预训练模型相比本文方法的检索精度有了明显提高,在200幅嫌疑鞋印和5000幅样本鞋印图像构成的测试数据集上top10的正确识别率达75.5%。 展开更多
关键词 卷积神经网络 vgg-16 预训练模型 微调 鞋印检索
在线阅读 下载PDF
基于QualNet的Link-16建模与仿真
5
作者 禹华钢 周安栋 刘宏波 《微计算机应用》 2008年第12期79-82,共4页
针对数据链Link-16的技术特性,参考战术数据链参考模型(Tactical DataLink Reference Model,TDLRM),设计了适合Link-16的协议体系模型。搭建了基于QualNet仿真平台的实际军事网络场景,对Link-16模型进行了模拟仿真,并对仿真结果中接收... 针对数据链Link-16的技术特性,参考战术数据链参考模型(Tactical DataLink Reference Model,TDLRM),设计了适合Link-16的协议体系模型。搭建了基于QualNet仿真平台的实际军事网络场景,对Link-16模型进行了模拟仿真,并对仿真结果中接收消息字数这一参数进行了统计分析。该仿真模型可分析各种情况下的Link-16的性能参数,为深入研究Link-16提供参考。 展开更多
关键词 LINK-16 QUALNET 参考模型 网络场景
在线阅读 下载PDF
Improved Siamese Palmprint Authentication Using Pre-Trained VGG16-Palmprint and Element-Wise Absolute Difference
6
作者 Mohamed Ezz Waad Alanazi +3 位作者 Ayman Mohamed Mostafa Eslam Hamouda Murtada K.Elbashir Meshrif Alruily 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2299-2317,共19页
Palmprint identification has been conducted over the last two decades in many biometric systems.High-dimensional data with many uncorrelated and duplicated features remains difficult due to several computational compl... Palmprint identification has been conducted over the last two decades in many biometric systems.High-dimensional data with many uncorrelated and duplicated features remains difficult due to several computational complexity issues.This paper presents an interactive authentication approach based on deep learning and feature selection that supports Palmprint authentication.The proposed model has two stages of learning;the first stage is to transfer pre-trained VGG-16 of ImageNet to specific features based on the extraction model.The second stage involves the VGG-16 Palmprint feature extraction in the Siamese network to learn Palmprint similarity.The proposed model achieves robust and reliable end-to-end Palmprint authentication by extracting the convolutional features using VGG-16 Palmprint and the similarity of two input Palmprint using the Siamese network.The second stage uses the CASIA dataset to train and test the Siamese network.The suggested model outperforms comparable studies based on the deep learning approach achieving accuracy and EER of 91.8%and 0.082%,respectively,on the CASIA left-hand images and accuracy and EER of 91.7%and 0.084,respectively,on the CASIA right-hand images. 展开更多
关键词 Palmprint authentication transfer learning feature extraction CLASSIFICATION vgg-16 and Siamese network
在线阅读 下载PDF
利用改进型VGG标签学习的表情识别方法 被引量:6
7
作者 程学军 邢萧飞 《计算机工程与设计》 北大核心 2022年第4期1134-1144,共11页
针对图像表情判别精度低下的问题,提出一种基于改进型VGG-16网络的人脸表情识别方法。为解决传统方法存在像素特征分布不均的问题,采用基于改进的高斯混合模型进行图像特征数据的有效提取;基于改进的VGG-16深度神经网络,增强人脸表情识... 针对图像表情判别精度低下的问题,提出一种基于改进型VGG-16网络的人脸表情识别方法。为解决传统方法存在像素特征分布不均的问题,采用基于改进的高斯混合模型进行图像特征数据的有效提取;基于改进的VGG-16深度神经网络,增强人脸表情识别的训练样本,实现对采集的图像数据多表情多场景精准区分。基于通用数据集及自采集数据集进行仿真实验,验证所提方法在表情识别的准确度和速度方面都展现出一定优势,尤其在黑暗条件下识别准确率可达90%左右。 展开更多
关键词 表情识别 vgg-16网络模型 高斯混合模型 相关情绪标签分布学习 正则化学习 红外图像
在线阅读 下载PDF
基于多并行计算和存储的CNN加速器 被引量:1
8
作者 李宗凌 汪路元 +3 位作者 禹霁阳 程博文 郝梁 张伟功 《计算机技术与发展》 2019年第7期11-16,共6页
根据深度卷积神经网络(CNN)前向推理结构特点,设计了基于多并行计算和存储的深度卷积神经网络加速器,从运算效率与数据重用两个角度分析了卷积运算的并行特征,并研究了全连接层的全并行流水实现方式。该加速器采用并行流水结构提升计算... 根据深度卷积神经网络(CNN)前向推理结构特点,设计了基于多并行计算和存储的深度卷积神经网络加速器,从运算效率与数据重用两个角度分析了卷积运算的并行特征,并研究了全连接层的全并行流水实现方式。该加速器采用并行流水结构提升计算效率,在卷积层运算中,充分利用多种卷积运算并行架构平衡运算效率与参数及数据载入带宽的需求,通过三种加速方式实现卷积层内全流水加速;在全连接层运算中,将乘累加运算设计成全流水处理架构,流水延时不超过20个处理时钟,并通过并行计算实现16倍加速。在基于ImageNet公开数据集验证实验中,该加速器每周期最多运行2304次乘累加运算,在150MHz的工作频率下,峰值运算速率达到691.2Gops,能效比为i7-6700-CPU的2700倍以上,为GTX-1050-GPU的290倍以上。该加速器在硬件资源、计算精度、速度以及功耗等多方面达到良好平衡,便于在星载嵌入式环境应用。 展开更多
关键词 卷积神经网络 并行计算和存储 加速器 vgg-16模型 现场可编程逻辑器件
在线阅读 下载PDF
基于改进CNN的公交车内拥挤状态识别 被引量:3
9
作者 徐明远 崔华 张立恒 《计算机技术与发展》 2020年第5期32-37,共6页
针对传统的视频图像处理方法对公交车内乘客拥挤状态的检测受运动阴影、动态背景及场景光照变化等因素的影响问题,提出了一种基于改进卷积神经网络VGG-16的公交车内拥挤状态识别方法。该方法在VGG-16的模型基础上,优化全连接层层数,使... 针对传统的视频图像处理方法对公交车内乘客拥挤状态的检测受运动阴影、动态背景及场景光照变化等因素的影响问题,提出了一种基于改进卷积神经网络VGG-16的公交车内拥挤状态识别方法。该方法在VGG-16的模型基础上,优化全连接层层数,使用迁移学习共享VGG-16预训练模型的各层权值参数进行训练。相对于文中的传统图像处理方法、AlexNet模型、GooleNet模型以及标准VGG-16模型,改进的VGG-16模型对公交车拥挤状态的识别准确率最高,识别精度能够达到96.1%。模型的损失值比标准VGG-16模型收敛得更快,模型表现得更加稳定。实验证明:改进后的VGG-16模型能够更好地提取公交内拥挤状态的特征,解决公交车内拥挤状态的识别问题。 展开更多
关键词 图像识别 卷积神经网络 模型改进 vgg-16 公交车 拥挤状态
在线阅读 下载PDF
基于迁移学习的航拍图像车辆目标检测方法研究 被引量:6
10
作者 袁功霖 尹奎英 李绮雪 《电子测量技术》 2018年第22期77-81,共5页
为有效识别航拍图片中的车辆目标,将迁移学习应用到Faster-RCNN算法模型训练中:将大规模数据集训练好的网络用于模型参数初始化,以减少训练时间并提高识别精度;针对ZF和VGG-16 2种经典网络模型,分别选取不同超参数进行了多组对比实验,... 为有效识别航拍图片中的车辆目标,将迁移学习应用到Faster-RCNN算法模型训练中:将大规模数据集训练好的网络用于模型参数初始化,以减少训练时间并提高识别精度;针对ZF和VGG-16 2种经典网络模型,分别选取不同超参数进行了多组对比实验,以选取最优超参数,并对比分析2种模型的检测效果。实验结果表明,该种方法可以在航拍图片集中有效检测到车辆目标,检测结果优于传统的机器学习方法,同时具有识别速度快的特点,可用于实时检测,在军事侦察及交通管控等方面具有应用价值。 展开更多
关键词 车辆检测 深度学习 卷积神经网络 Faster-RCNN算法 迁移学习 ZF模型 vgg-16模型
原文传递
Fruits and Vegetables Freshness Categorization Using Deep Learning 被引量:3
11
作者 Labiba Gillani Fahad Syed Fahad Tahir +3 位作者 Usama Rasheed Hafsa Saqib Mehdi Hassan Hani Alquhayz 《Computers, Materials & Continua》 SCIE EI 2022年第6期5083-5098,共16页
The nutritional value of perishable food items,such as fruits and vegetables,depends on their freshness levels.The existing approaches solve a binary class problem by classifying a known fruit\vegetable class into fre... The nutritional value of perishable food items,such as fruits and vegetables,depends on their freshness levels.The existing approaches solve a binary class problem by classifying a known fruit\vegetable class into fresh or rotten only.We propose an automated fruits and vegetables categorization approach that first recognizes the class of object in an image and then categorizes that fruit or vegetable into one of the three categories:purefresh,medium-fresh,and rotten.We gathered a dataset comprising of 60K images of 11 fruits and vegetables,each is further divided into three categories of freshness,using hand-held cameras.The recognition and categorization of fruits and vegetables are performed through two deep learning models:Visual Geometry Group(VGG-16)and You Only Look Once(YOLO),and their results are compared.VGG-16 classifies fruits and vegetables and categorizes their freshness,while YOLO also localizes them within the image.Furthermore,we have developed an android based application that takes the image of the fruit or vegetable as input and returns its class label and its freshness degree.A comprehensive experimental evaluation of proposed approach demonstrates that the proposed approach can achieve a high accuracy and F1score on gathered FruitVeg Freshness dataset.The dataset is publicly available for further evaluation by the research community. 展开更多
关键词 Fruits and vegetables classification degree of freshness deep learning object detection model vgg-16 YOLO-v5
在线阅读 下载PDF
A Robust Automated Framework for Classification of CT Covid-19 Images Using MSI-ResNet 被引量:1
12
作者 Aghila Rajagopal Sultan Ahmad +3 位作者 Sudan Jha Ramachandran Alagarsamy Abdullah Alharbi Bader Alouffi 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期3215-3229,共15页
Nowadays,the COVID-19 virus disease is spreading rampantly.There are some testing tools and kits available for diagnosing the virus,but it is in a lim-ited count.To diagnose the presence of disease from radiological i... Nowadays,the COVID-19 virus disease is spreading rampantly.There are some testing tools and kits available for diagnosing the virus,but it is in a lim-ited count.To diagnose the presence of disease from radiological images,auto-mated COVID-19 diagnosis techniques are needed.The enhancement of AI(Artificial Intelligence)has been focused in previous research,which uses X-ray images for detecting COVID-19.The most common symptoms of COVID-19 are fever,dry cough and sore throat.These symptoms may lead to an increase in the rigorous type of pneumonia with a severe barrier.Since medical imaging is not suggested recently in Canada for critical COVID-19 diagnosis,computer-aided systems are implemented for the early identification of COVID-19,which aids in noticing the disease progression and thus decreases the death rate.Here,a deep learning-based automated method for the extraction of features and classi-fication is enhanced for the detection of COVID-19 from the images of computer tomography(CT).The suggested method functions on the basis of three main pro-cesses:data preprocessing,the extraction of features and classification.This approach integrates the union of deep features with the help of Inception 14 and VGG-16 models.At last,a classifier of Multi-scale Improved ResNet(MSI-ResNet)is developed to detect and classify the CT images into unique labels of class.With the support of available open-source COVID-CT datasets that consists of 760 CT pictures,the investigational validation of the suggested method is estimated.The experimental results reveal that the proposed approach offers greater performance with high specificity,accuracy and sensitivity. 展开更多
关键词 Covid-19 CT images multi-scale improved ResNet AI inception 14 and vgg-16 models
在线阅读 下载PDF
Performance Analysis of Intelligent Neural-Based Deep Learning System on Rank Images Classification
13
作者 Muhammad Hameed Siddiqi Asfandyar Khan +3 位作者 Muhammad Bilal Khan Abdullah Khan Madallah Alruwaili Saad Alanazi 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2219-2239,共21页
The use of the internet is increasing all over the world on a daily basis in the last two decades.The increase in the internet causes many sexual crimes,such as sexual misuse,domestic violence,and child pornography.Va... The use of the internet is increasing all over the world on a daily basis in the last two decades.The increase in the internet causes many sexual crimes,such as sexual misuse,domestic violence,and child pornography.Various research has been done for pornographic image detection and classification.Most of the used models used machine learning techniques and deep learning models which show less accuracy,while the deep learning model ware used for classification and detection performed better as compared to machine learning.Therefore,this research evaluates the performance analysis of intelligent neural-based deep learning models which are based on Convolution neural network(CNN),Visual geometry group(VGG-16),VGG-14,and Residual Network(ResNet-50)with the expanded dataset,trained using transfer learning approaches applied in the fully connected layer for datasets to classify rank(Pornographic vs.Nonpornographic)classification in images.The simulation result shows that VGG-16 performed better than the used model in this study without augmented data.The VGG-16 model with augmented data reached a training and validation accuracy of 0.97,0.94 with a loss of 0.070,0.16.The precision,recall,and f-measure values for explicit and non-explicit images are(0.94,0.94,0.94)and(0.94,0.94,0.94).Similarly,The VGG-14 model with augmented data reached a training and validation accuracy of 0.98,0.96 with a loss of 0.059,0.11.The f-measure,recall,and precision values for explicit and non-explicit images are(0.98,0.98,0.98)and(0.98,0.98,0.98).The CNN model with augmented data reached a training and validation accuracy of 0.776&0.78 with losses of 0.48&0.46.The f-measure,recall,and precision values for explicit and non-explicit images are(0.80,0.80,0.80)and(0.78,0.79,0.78).The ResNet-50 model with expanded data reached with training accuracy of 0.89 with a loss of 0.389 and 0.86 of validation accuracy and a loss of 0.47.The f-measure,recall,and precision values for explicit and non-explicit images are(0.86,0.97,0.91)and(0.86,0.93,0.89).Where else without augmented data the VGG-16 model reached a training and validation accuracy of 0.997,0.986 with a loss of 0.008,0.056.The f-measure,recall,and precision values for explicit and non-explicit images are(0.94,0.99,0.97)and(0.99,0.93,0.96)which outperforms the used models with the augmented dataset in this study. 展开更多
关键词 vgg-16 vgg-14 pornography detection EXPANSION ResNet-50 convolution neural network(CNN) machine learning
在线阅读 下载PDF
Detecting Driver Distraction Using Deep-Learning Approach
14
作者 Khalid A.AlShalfan Mohammed Zakariah 《Computers, Materials & Continua》 SCIE EI 2021年第7期689-704,共16页
Currently,distracted driving is among the most important causes of traffic accidents.Consequently,intelligent vehicle driving systems have become increasingly important.Recently,interest in driver-assistance systems t... Currently,distracted driving is among the most important causes of traffic accidents.Consequently,intelligent vehicle driving systems have become increasingly important.Recently,interest in driver-assistance systems that detect driver actions and help them drive safely has increased.In these studies,although some distinct data types,such as the physical conditions of the driver,audio and visual features,and vehicle information,are used,the primary data source is images of the driver that include the face,arms,and hands taken with a camera inside the car.In this study,an architecture based on a convolution neural network(CNN)is proposed to classify and detect driver distraction.An efficient CNN with high accuracy is implemented,and to implement intense convolutional networks for large-scale image recognition,a new architecture was proposed based on the available Visual Geometry Group(VGG-16)architecture.The proposed architecture was evaluated using the StateFarm dataset for driver-distraction detection.This dataset is publicly available on Kaggle and is frequently used for this type of research.The proposed architecture achieved 96.95%accuracy. 展开更多
关键词 Deep learning driver-distraction detection convolution neural networks vgg-16
在线阅读 下载PDF
Crowd Density Estimation Based on Multi-scale Feature Fusion and Information Enhancement
15
作者 Lina Zou 《IJLAI Transactions on Science and Engineering》 2025年第3期1-11,共11页
Aiming at the problems such as diverse target scales and large-scale changes in crowds in dense crowd scenarios,a crowd density estimation method based on multi-scale feature fusion and information en-hancement is pro... Aiming at the problems such as diverse target scales and large-scale changes in crowds in dense crowd scenarios,a crowd density estimation method based on multi-scale feature fusion and information en-hancement is proposed.Firstly,considering that small-scale targets account for a relatively large proportion in the image,based on the VGG-16 network,the dilated convolution module is introduced to mine the detailed information of the image.Secondly,in order to make full use of the multi-scale information of the target,a new context-aware module is constructed to extract the contrast features between different scales.Finally,con-sidering the characteristic of continuous changes in the target scale,a multi-scale feature aggregation module is designed to enhance the sampling range of dense scales and multi-scale information interaction,thereby improving the network performance.Experiments on public datasets show that the proposed method in this paper can effectively estimate the population density compared with other advanced methods. 展开更多
关键词 Crowd density estimation Multi-scale feature fusion Information enhancement vgg-16 network.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部