Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning...Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning electron microscopy in combination with energy dispersive spectrometry. Mechanical properties, such as transverse rupture strength, hardness and fracture toughness, were measured. The results show that there are black core-grey rim structure and white core-grey rim structure in the microstructure. The grains become fine due to the VC/Cr3C2, and the grains of cermet added with 0.75VC/0.25Cr3C2 are refined most remarkably. The black core becomes finer with the increase of VC addition and rim phase becomes thicker with the decrease of Cr3C2 addition. The porosity increases with the increase of VC addition in VC/Cr3C2. Compared with the cermet free of VC/Cr3C2, the transverse rupture strength and hardness of cermets with VC/Cr3C2 are both improved, and the maximum values are both found for the cermet with 0.25VC/0.75Cr3C2. The fracture toughness can be effectively promoted by adding VC/Cr3C2 with an appropriate ratio of VC to Cr3C2, and the maximum value is found for the cermet with 0.5VC/0.5Cr3C2.展开更多
The effect of addition of metallic carbides Cr3C2 and Cr3C2 + VC on structure and mechanical properties of WC-10 wt% Co nanocomposites have been studied. After preparing and compacting of the powders under pressure of...The effect of addition of metallic carbides Cr3C2 and Cr3C2 + VC on structure and mechanical properties of WC-10 wt% Co nanocomposites have been studied. After preparing and compacting of the powders under pressure of 200 MPa, the samples were sintered at temperatures of 1370°C, 1410°C and 1450°C for 1 hour. Microstructural examinations by SEM show that the average grain size obtained for Cr3C2 + VC added alloys reduced 50 percent and also grain size distribution was narrower compared to those samples without grain growth inhibitors. Furthermore, co-addition of Cr3C2 and VC rise to a higher Vickers hardness and fracture toughness of the sintered alloys at 1410°C.展开更多
The rods that were shaped from nanocrystalline WC- 10.21 Co-0.42 VC/ Cr3 C2 ( wt% ) composite powders by using powder extrusion molding (PEM) were investigated. The nanocrystalline WC- 10.21 Co- 0. 42 VC/ Cr3 C2 ...The rods that were shaped from nanocrystalline WC- 10.21 Co-0.42 VC/ Cr3 C2 ( wt% ) composite powders by using powder extrusion molding (PEM) were investigated. The nanocrystalline WC- 10.21 Co- 0. 42 VC/ Cr3 C2 ( wt% ) composite powders were prepared by the spray thermal decomposition-continuous reduction and carburization technology. In order to improve the properties of rods shaped by using powder extrusion molding, the cold isostatic pressing (CIP) technology was used before or after debinding. Specimens were siutered by vacuum siutering and hot isostatic pressing (HIP). The density, Rockwell A hardness, magnetic coercivity , and magnetic saturation induction of siutered specimen were measured. The microstructure of the green bodies and the siutered specimens was studied by scanning electron microscopy (SEM). Results show that the rod formed by using powder extrusion molding after debinding and followed by cold isostatic pressing can be siutered to 99.5% density of composite cemented carbide rods with an average grain size of about 200- 300 nm, magnetic coercivity of 30.4 KA / m, Rockwell A hardness of 92.6 and magnetic saturation induction of 85% . Superfine WC- 10 Co cemented carbide rods with excellent properties were obtained.展开更多
基金Project (090414185) supported by the Natural Science Foundation of Anhui Province, China
文摘Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning electron microscopy in combination with energy dispersive spectrometry. Mechanical properties, such as transverse rupture strength, hardness and fracture toughness, were measured. The results show that there are black core-grey rim structure and white core-grey rim structure in the microstructure. The grains become fine due to the VC/Cr3C2, and the grains of cermet added with 0.75VC/0.25Cr3C2 are refined most remarkably. The black core becomes finer with the increase of VC addition and rim phase becomes thicker with the decrease of Cr3C2 addition. The porosity increases with the increase of VC addition in VC/Cr3C2. Compared with the cermet free of VC/Cr3C2, the transverse rupture strength and hardness of cermets with VC/Cr3C2 are both improved, and the maximum values are both found for the cermet with 0.25VC/0.75Cr3C2. The fracture toughness can be effectively promoted by adding VC/Cr3C2 with an appropriate ratio of VC to Cr3C2, and the maximum value is found for the cermet with 0.5VC/0.5Cr3C2.
文摘The effect of addition of metallic carbides Cr3C2 and Cr3C2 + VC on structure and mechanical properties of WC-10 wt% Co nanocomposites have been studied. After preparing and compacting of the powders under pressure of 200 MPa, the samples were sintered at temperatures of 1370°C, 1410°C and 1450°C for 1 hour. Microstructural examinations by SEM show that the average grain size obtained for Cr3C2 + VC added alloys reduced 50 percent and also grain size distribution was narrower compared to those samples without grain growth inhibitors. Furthermore, co-addition of Cr3C2 and VC rise to a higher Vickers hardness and fracture toughness of the sintered alloys at 1410°C.
基金Funded by Open Foundation of State Key Laboratory of AdvancedTechnologyfor Materials Synthesis and Processing, Wuhan Universi-ty of Technology, the Post PhD Science Foundation of China(2003034504) andthe Foundation of Wuhan University of Technol-ogy(2003XJJ202)
文摘The rods that were shaped from nanocrystalline WC- 10.21 Co-0.42 VC/ Cr3 C2 ( wt% ) composite powders by using powder extrusion molding (PEM) were investigated. The nanocrystalline WC- 10.21 Co- 0. 42 VC/ Cr3 C2 ( wt% ) composite powders were prepared by the spray thermal decomposition-continuous reduction and carburization technology. In order to improve the properties of rods shaped by using powder extrusion molding, the cold isostatic pressing (CIP) technology was used before or after debinding. Specimens were siutered by vacuum siutering and hot isostatic pressing (HIP). The density, Rockwell A hardness, magnetic coercivity , and magnetic saturation induction of siutered specimen were measured. The microstructure of the green bodies and the siutered specimens was studied by scanning electron microscopy (SEM). Results show that the rod formed by using powder extrusion molding after debinding and followed by cold isostatic pressing can be siutered to 99.5% density of composite cemented carbide rods with an average grain size of about 200- 300 nm, magnetic coercivity of 30.4 KA / m, Rockwell A hardness of 92.6 and magnetic saturation induction of 85% . Superfine WC- 10 Co cemented carbide rods with excellent properties were obtained.