Introduction With the continuous advancement of surgical technique,combined vascular resection has become increasingly common during complex surgical procedures.In such cases,ensuring the safe and effective reconstruc...Introduction With the continuous advancement of surgical technique,combined vascular resection has become increasingly common during complex surgical procedures.In such cases,ensuring the safe and effective reconstruction of blood vessels after resection is of paramount importance.When direct vascular reconstruction is not feasible,the application of vascular grafts becomes necessary to restore vascular continuity and function.Commonly employed vascular grafts in clinical practice include allogeneic graft vessels(AGVs),autologous vessels,and artificial vessels.Among these,AGVs offer distinct advantages particularly in its complex structures and satisfying histocompatibility,making it a valuable option for vascular reconstruction.展开更多
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s...Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.展开更多
Alzheimer’s disease(AD)is the most common form of dementia,affecting over 50 million people worldwide.This figure is projected to nearly double every 20 years,reaching 82 million by 2030 and 152 million by 2050(Alzhe...Alzheimer’s disease(AD)is the most common form of dementia,affecting over 50 million people worldwide.This figure is projected to nearly double every 20 years,reaching 82 million by 2030 and 152 million by 2050(Alzheimer’s Disease International).The apolipoproteinε4(APOE4)allele is the strongest genetic risk factor for late-onset AD(after age 65 years).Apolipoprotein E,a lipid transporter,exists in three variants:ε2,ε3,andε4.APOEε2(APOE2)is protective against AD,APOEε3(APOE3)is neutral,while APOE4 significantly increases the risk.Individuals with one copy of APOE4 have a 4-fold greater risk of developing AD,and those with two copies face an 8-fold risk compared to non-carriers.Even in cognitively normal individuals,APOE4 carriers exhibit brain metabolic and vascular deficits decades before amyloid-beta(Aβ)plaques and neurofibrillary tau tangles emerge-the hallmark pathologies of AD(Reiman et al.,2001,2005;Thambisetty et al.,2010).Notably,studies have demonstrated reduced glucose uptake,or hypometabolism,in brain regions vulnerable to AD in asymptomatic middle-aged APOE4 carriers,long before clinical symptoms arise(Reiman et al.,2001,2005).展开更多
Chronic cerebral hypoperfusion can lead to neuronal necrosis,trigger inflammatory responses,promote white matter damage,and ultimately result in cognitive impairment.Consequently,chronic cerebral hypoperfusion is an i...Chronic cerebral hypoperfusion can lead to neuronal necrosis,trigger inflammatory responses,promote white matter damage,and ultimately result in cognitive impairment.Consequently,chronic cerebral hypoperfusion is an important factor influencing the onset and progression of vascular dementia.The myelin sheath is a critical component of white matter,and damage and repair of the white matter are closely linked to myelin sheath integrity.This article reviews the role of microglia in vascular dementia,focusing on their effects on myelin sheaths and the potential therapeutic implications.The findings suggest that ischemia and hypoxia cause disruption of the blood-brain barrier and activate microglia,which may worsen blood-brain barrier damage through the release of matrix-degrading enzymes.Microglia-mediated metabolic reprogramming is recognized as an important driver of inflammation.Damage to the blood-brain barrier and subsequent inflammation can lead to myelin injury and accelerate the progression of vascular dementia.Early activation of microglia is a protective response that contributes to the maintenance of blood-brain barrier integrity through sensing,debris-clearing,and defensive mechanisms.However,prolonged activation can trigger a shift in microglia toward the pro-inflammatory M1 phenotype,resulting in myelin damage and cognitive impairment.Triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells 1 have been identified as potential biomarkers for vascular dementia,as both are closely linked to cognitive decline.Although effective clinical treatments for myelin damage in the central nervous system are currently lacking,researchers are actively working to develop targeted therapies.Several drugs,including nimodipine,dopaminergic agents,simvastatin,biotin,and quetiapine,have been evaluated for clinical use in treating microglial and myelin damage.Future research will face challenges in developing targeted therapeutic strategies for vascular dementia,requiring further investigation into the timing,duration,and specific mechanisms of microglial activation,as well as the exploration of new drug combinations and additional therapeutic targets.展开更多
Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated ...Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated to neuroinflammation,such as Alzheimer's disease,it is now shown to precede pathological protein aggregations.展开更多
The rise of the aging population parallels the rapidly increasing cases of neurological disorders. This puts pressure on scientists and physicians to find novel methods that can prevent and treat neurodegeneration. Th...The rise of the aging population parallels the rapidly increasing cases of neurological disorders. This puts pressure on scientists and physicians to find novel methods that can prevent and treat neurodegeneration. The brain is made up of a complex network of different cell types that work in tandem to maintain systemic homeostasis.展开更多
Type 2 diabetes(T2D)is an insidious disease associated with neural and vascular complications,acceleration of cardiovascular disease,changes in heart function,and premature death.In the newly released article of the J...Type 2 diabetes(T2D)is an insidious disease associated with neural and vascular complications,acceleration of cardiovascular disease,changes in heart function,and premature death.In the newly released article of the Journal of Sport and Health Science,Liang et al.1 describe results from the UK Biobank data showing the benefits of moderate-to-vigorous intensity physical activity(MVPA)on reducing the risks for vascular events in 11,474 adults with T2D and prediabetes.展开更多
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central ...Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.展开更多
Dear Editor,Sturge-Weber Syndrome(SWS)is a rare congenital neurocutaneous syndrome[1,2],with an estimated prevalence of 0.19 in 100,000 annually[3].It is a non-hereditary disease linked to a somatic mutation in the GN...Dear Editor,Sturge-Weber Syndrome(SWS)is a rare congenital neurocutaneous syndrome[1,2],with an estimated prevalence of 0.19 in 100,000 annually[3].It is a non-hereditary disease linked to a somatic mutation in the GNAQ,GNA11,or GNB2 gene[1],leading to vascular malformations in the cutaneous forehead,cerebral cortex,and eye[1,2].Notably,~70%of pediatric patients diagnosed with SWS exhibit brain calcification(BC)[4],though the prevalence of BC ranges from only 1%in young individuals to>20%in the senior population(>60 years old)[5].Similar to the elderly,BC in pediatric SWS patients is identified as vascular calcification[6,7],whereas BC in pediatric patients with tuberous sclerosis and tumors has been previously described as dystrophic calcification[6].展开更多
BACKGROUND Peripheral endovascular intervention(PEVI)is performed using radiation.Radiation has deleterious health consequences for patients and operators.AIM To investigate the gender radiation disparities and proced...BACKGROUND Peripheral endovascular intervention(PEVI)is performed using radiation.Radiation has deleterious health consequences for patients and operators.AIM To investigate the gender radiation disparities and procedural outcomes in PEVI.METHODS A prospective observational study was performed in 186 consecutive patients(65±12 years)at an academic medical center from January 2019 to April 2020(mean follow-up of 3.9±3.6 months)comparing the gender radiation disparity and outcomes of PEVI(n=147 underwent intervention,79.0%).Groups were divided into women(n=99,53.2%)and men(n=87,48.4%).Primary endpoints included air kerma,dose area product(DAP),fluoroscopy time,and contrast use.Secondary endpoints included all-cause mortality,acute myocardial infarction,acute kidney injury,stroke,repeat revascularization,major adverse limb event,and the composite of complications.RESULTS Men showed increased DAP compared with women(15221.2±25858.5µGy×m^(2) vs 9251.7±9555.3µGy×m^(2),P=0.047),but no significant difference in air kerma or any other primary endpoints.In the secondary endpoints,no significant diffe-rence was found between gender.CONCLUSION Men had increased DAP indicating more radiation absorption in the exposed area.Gender outcomes showed no difference in complications.Thus,PEVI can be safely performed in men or women.展开更多
Sodium-glucose cotransporter-2(SGLT-2)inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules,consequentl...Sodium-glucose cotransporter-2(SGLT-2)inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules,consequently augmenting urinary glucose excretion and attenuating blood glucose levels.Extensive clinical investigations have demonstrated their profound cardiovascular efficacy.Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling.Specifically,these inhibitors exhibit promising potential in enhancing pulmonary vascular endothelial cell function,suppressing pulmonary smooth muscle cell proliferation and migration,reversing pulmonary arterial remodeling,and maintaining hemodynamic equilibrium.This comprehensive review synthesizes current literature to delineate the mechanisms by which SGLT-2 inhibitors enhance pulmonary vascular cell function and reverse pulmonary remodeling,thereby offering novel therapeutic perspectives for pulmonary vascular diseases.展开更多
AIM: To establish the role of vascular endothelial growth factor (VEGF) in the oncogenesis of human gastric carcinoma more directly. METHODS: The expression of VEGF and its receptor kinase-domain insert containing rec...AIM: To establish the role of vascular endothelial growth factor (VEGF) in the oncogenesis of human gastric carcinoma more directly. METHODS: The expression of VEGF and its receptor kinase-domain insert containing receptor (KDR) in human gastric cancer tissue were observed by immunohistochemical staining. VEGF levels were manipulated in human gastric cancer cell using eukaryotic expression constructs designed to express the complete VEGF(165) complimentary DNA in either the sense or antisense orientation. The biological changes of the cells were observed in which VEGF was up-regulated or down-regulated. RESULTS: VEGF-positive rate was 50%, and VEGF was mainly localized in the cytoplasm and membrane of the tumor cells, while KDR was mainly located in the membrane of vascular endothelial cells in gastric cancer tissues and peri-cancerous tissue. In 2 cases of 50 specimens, the gastric cancer cells expressed KDR, localized in both the cytoplasm and membrane. Introduction of VEGF(165) antisense into human gastric cancer cells (SGC-7901, immunofluorescence intensity, 31.6%)) resulted in a significant reduction in VEGF-specific messenger RNA and total and cell surface VEGF protein (immunofluorescence intensity, 8.9%) (P【0.05). Conversely, stable integration of VEGF(165) in the sense orientation resulted in an increase in cellular and cell surface VEGF (immunofluorescence intensity, 75.4%) (P【0.05). Lowered VEGF levels were associated with a marked decrease in the growth of nude mouse xenografted tumor (at 33 days postimplantation, tumor volume: 345.40 +/- 136.31 mm3)(P【0.05 vs control SGC-7901 group: 1534.40 +/- 362.88 mm3), whereas up-regulation of VEGF resulted in increased xenografted tumor size (at 33 days postimplantation, tumor volume: 2350.50 +/- 637.70 mm3) (P【0.05 vs control SGC-7901 group). CONCLUSION: This study provides direct evidence that VEGF plays an important role in the oncogenesis of human gastric cancer.展开更多
Pericoronary adipose tissue(PCAT)plays an important role in the pathogenesis and progression of cardiovascular diseases due to its bidirectional communication with the coronary artery wall.In recent years,PCAT paramet...Pericoronary adipose tissue(PCAT)plays an important role in the pathogenesis and progression of cardiovascular diseases due to its bidirectional communication with the coronary artery wall.In recent years,PCAT parameters measured using coronary computed tomography have emerged as potential noninvasive imaging biomarkers for quantifying coronary artery inflammation,with significant clinical value in the early detection,disease progression assessment,treatment efficacy evaluation,and prognosis prediction of cardiovascular diseases.Furthermore,new technologies such as PCAT radiomics analysis have broadened its potential applications in evaluating coronary plaque vulnerability,predicting cardiovascular events,and improving risk stratification.This review discusses recent advances in PCAT research,focusing on its role in coronary artery disease risk identification and inflammation monitoring,and aims to offer imaging-based insights to support its future clinical use in cardiovascular disease management.展开更多
In this article,we comment on the paper by Kakinuma et al published recently.We focus specifically on the diagnosis of uterine pseudoaneurysm,but we also review other uterine vascular anomalies that may be the cause o...In this article,we comment on the paper by Kakinuma et al published recently.We focus specifically on the diagnosis of uterine pseudoaneurysm,but we also review other uterine vascular anomalies that may be the cause of life-threating hemorrhage and the different causes of uterine pseudoaneurysms.Uterine artery pseudoaneurysm is a complication of both surgical gynecological and nontraumatic procedures.Massive hemorrhage is the consequence of the rupture of the pseudoaneurysm.Uterine artery pseudoaneurysm can develop after obstetric or gynecological procedures,being the most frequent after cesarean or vaginal deliveries,curettage and even during pregnancy.However,there are several cases described unrelated to pregnancy,such as after conization,hysteroscopic surgery or laparoscopic myomectomy.Hemorrhage is the clinical manifestation and it can be life-threatening so suspicion of this vascular lesion is essential for early diagnosis and treatment.However,there are other uterine vascular anomalies that may be the cause of severe hemorrhage,which must be taken into account in the differential diagnosis.Computed tomography angiography and embolization is supposed to be the first therapeutic option in most of them.展开更多
Vascular stents play an important role in the minimally invasive treatment of vascular diseases,such as vascular stenosis,vascular aneurysm,vascular dissection and vascular atherosclerotic plaque disease.Bare metal st...Vascular stents play an important role in the minimally invasive treatment of vascular diseases,such as vascular stenosis,vascular aneurysm,vascular dissection and vascular atherosclerotic plaque disease.Bare metal stents were initially fabricated;however,the incidence of complications such as thrombosis,inflammation,restenosis,vascular injury,displacement and endoleakage is still high after implantation.To overcome these complications,several strategies for designing functional vascular stents have been carried out.Drug-eluting stents,biodegradable stents and bionic stents were manufactured and investigated.This review aims to comprehensively analyze the vascular diseases suitable for stent implantation treatment,tissue reactions after implantation,the materials and manufacturing techniques used to fabricate vascular stents,the various application scenarios in which they could be used to treat vascular lesions and the development process of vascular stents.Future development trends of vascular stents are expected to prioritize their performance,biocompatibility,and clinical accessibility.The design of vascular stents may be transformed or improved to better fulfill the rehabilitation requirements of vascular disease patients.Finally,various application scenarios may be used to treat vascular or even nonvascular diseases via endovascular access.展开更多
Objective:Cold exposure may impair vascular function and promote cardiovascular diseases(CVDs)by causing vasoconstriction,hemodynamic changes,and sympathetic activation.Vascular aging,a key factor in CVDs,is linked to...Objective:Cold exposure may impair vascular function and promote cardiovascular diseases(CVDs)by causing vasoconstriction,hemodynamic changes,and sympathetic activation.Vascular aging,a key factor in CVDs,is linked to phenotypic switching of vascular smooth muscle cells(VSMCs),but its regulatory mechanisms are not fully understood.Materials and methods:We used aged C57BL/6 mice and D-galactose-induced senescent VSMCs to investigate the role of the E3 ligase RLIM in arterial aging.RLIM knockdown and overexpression in vivo were achieved using adeno-associated virus(AAV)vectors.Vascular aging and stiffness were assessed usingβ-galactosidase staining,pulse wave velocity(PWV)measurements,and histological staining.Proteomic profiling was conducted to identify key protein alterations associated with vascular dysfunction and to elucidate underlying mechanisms.Results:RLIM expression was significantly upregulated in the aortae of aged mice and D-galactose-induced senescent VSMCs.AAV-mediated RLIM knockdown significantly attenuated vascular aging,as evidenced by vascular ultrasound and histological assessments.Conversely,RLIM overexpression exacerbated vascular damage.Proteomic analysis revealed that RLIM knockdown in VSMCs from aged mice resulted in increased expression of smooth muscle contractile proteins and decreased levels of inflammatory markers,indicating a phenotypic shift toward a more contractile state.Conclusion:These findings identify RLIM as a key regulator of arterial aging and a promising therapeutic target for age-related cardiovascular diseases.展开更多
MANTA vascular closure device is an alternative vascular access closure device that is predominantly designed for large bore arteriotomy procedures.Its implementation to reduce morbidity and mortality following percut...MANTA vascular closure device is an alternative vascular access closure device that is predominantly designed for large bore arteriotomy procedures.Its implementation to reduce morbidity and mortality following percutaneous procedures including peripheral veno-arterial(VA)-extracorporeal membrane oxygenation(ECMO)in critically ill patients with various severe clinical conditions such as refractory cardiogenic shock remains to be under scientific discussion.The use of the MANTA vascular closure device leads to a sufficient reduction in a number of post-decannulation complications such as bleeding,vascular complications,inflammatory reactions and major amputation.Furthermore,the technical success of percutaneous decannulation of VA-ECMO with the MANTA vascular closure device appears to be safe and effective.It has been reported that MANTA vascular closure device exerted a strict similarity with other vascular surgical systems in safe profile regardless of the indication for its utilization.Overall,the immobilized patients achieved a favorable recovery outcome with MANTA including safe decannulation and low risk of vascular complications.The authors suggest the use of pulse wave distal Doppler technology for early detection of these clinically relevant complications.In conclusion,MANTA vascular closure device seems to be safe and effective technical approach to provide low-risk vascular assess for a long time for severe sick individuals.展开更多
Dear Editor,We describe a case diagnosed with exudative perifoveal vascular anomalous complex(ePVAC)successfully treated with focal laser photocoagulation(577 nm),achieving a favorable prognosis with best-corrected vi...Dear Editor,We describe a case diagnosed with exudative perifoveal vascular anomalous complex(ePVAC)successfully treated with focal laser photocoagulation(577 nm),achieving a favorable prognosis with best-corrected visual acuity(BCVA)of 20/20.Additionally,we discussed the identification of a possible early-onset non-ePVAC.The ePVAC is characterized as an isolated,aneurysmal abnormity near the macula and usually accompanied by cystic macular edema(ME)[1-2].展开更多
AIM:To repor t the 24mo outcomes of vascular endothelial growth factor(VEGF)inhibitors for myopic choroidal neovascularization(mCNV)in routine clinical practice and simultaneously evaluated the real-world safety.METHO...AIM:To repor t the 24mo outcomes of vascular endothelial growth factor(VEGF)inhibitors for myopic choroidal neovascularization(mCNV)in routine clinical practice and simultaneously evaluated the real-world safety.METHODS:The patients who received intravitreal injections of VEGF inhibitors of either ranibizumab(0.5 mg)or conbercept(0.5 mg)for mCNV were analyzed from 1 January 2017 to 1 January 2022.The primary outcome variables were mean change in best-corrected visual acuity(BCVA)and central macular thickness(CMT)changes.The secondary outcome variables included IOP changes,the period of mCNV re-treatment,and ocular adverse events.RESULTS:Totally 83 patients aged 56.40±15.36y with axial length 29.67±2.09 mm were included.In visual acuity,the mean logMAR BCVA at baseline was 0.81±0.43.After the initial improvement at 1,3,and 6mo(P<0.05),from month 12 onwards,no statistical difference compared to baseline was found.The mean CMT from 1mo onwards had a statistically significant decrease compared with baseline CMT(P<0.05).The regression model showed better baseline BCVA and thicker baseline CMT,significantly associated with the final outcomes.In univariate analysis,choosing 3+pro re nata(PRN)as the initial injection treatment regimen was associated with better BCVA at 24mo[hazard ratio(HR)=-0.65,95%CI:-1.23,-0.07,P=0.048].However,the difference was not significant in multivariate analysis(HR=-0.59,95%CI:-1.21,0.03,P=0.089).Regarding mCNV recurrence,the mean period(P=0.725)and the proportion of mCNV reactivation(P=1.00)were similar between ranibizumab and conbercept.Kaplan-Meier plot also analyzed that the median time of re-injection was not significantly different among gender,drug,and initial injection treatment regimen.No systemic adverse events related to the therapy were observed.CONCLUSION:BCVA gains achieved by the end of our study maintain generally sustained at the 24-mo follow-up.The findings also indicate that ranibizumab and conbercept demonstrate comparable efficacy and safety profiles.Additionally,intravitreal anti-VEGF therapy using 1+PRN regimen,offers certain advantages in both efficacy and cost-effectiveness.展开更多
BACKGROUND The heterogeneous group of disorders called peripheral vascular diseases(PVDs)occurs outside the heart and brain tissue to cause ischemia and severe health complications.Diagnosis accuracy is essential in s...BACKGROUND The heterogeneous group of disorders called peripheral vascular diseases(PVDs)occurs outside the heart and brain tissue to cause ischemia and severe health complications.Diagnosis accuracy is essential in starting appropriate patient management at the proper time.Modern medicine considers skin biopsies crucial diagnostic tools that yield histopathological and molecular evidence for examining PVD-related microvascular changes.AIM To evaluate skin biopsy applications in PVD diagnostics through artistic analysis of technical processes and examination of pathological and innovative molecular indicators.METHODS A systematic review of randomized controlled trials and original studies about skin biopsy utility in PVD diagnosis used PubMed,Scopus,and EMBASE search platforms.The reviewed studies met specific entry requirements,while all case reports and review articles remained excluded.RESULTS A total of 22 studies suited the research criteria that were evaluated.Researchers emphasized the value of skin biopsies for identifying inflammatory from non-inflammatory PVDs.At the same time,they detect systemic sclerosis and diabetic vasculopathy abnormalities of micro-vessels and identify endothelial dysfunction through measurements of vascular endothelial growth factor and intercellular adhesion molecule-1 and endothelial nitric oxide synthase markers.Skin biopsies require further improvement because they cause patient discomfort and produce variable diagnostic results that specialists must interpret.CONCLUSION Skin biopsies enable essential diagnostic findings about PVD and improve patient detection.The development of standardized biopsy procedures and molecular diagnosis techniques should be studied to advance PVD diagnoses in clinical practice.展开更多
基金supported by grants from the Research and Demonstration Application of Clinical Diagnostic and Treatment Techniques in the Capital(Z211100002921025)Capital’s Funds for Health Improvement and Research(CFH2020-2-2036)。
文摘Introduction With the continuous advancement of surgical technique,combined vascular resection has become increasingly common during complex surgical procedures.In such cases,ensuring the safe and effective reconstruction of blood vessels after resection is of paramount importance.When direct vascular reconstruction is not feasible,the application of vascular grafts becomes necessary to restore vascular continuity and function.Commonly employed vascular grafts in clinical practice include allogeneic graft vessels(AGVs),autologous vessels,and artificial vessels.Among these,AGVs offer distinct advantages particularly in its complex structures and satisfying histocompatibility,making it a valuable option for vascular reconstruction.
基金supported by the National Natural Science Foundation of China,Nos.82072165 and 82272256(both to XM)the Key Project of Xiangyang Central Hospital,No.2023YZ03(to RM)。
文摘Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
基金supported by National Institute on Aging(NIH-NIA)R01AG054459(to ALL).
文摘Alzheimer’s disease(AD)is the most common form of dementia,affecting over 50 million people worldwide.This figure is projected to nearly double every 20 years,reaching 82 million by 2030 and 152 million by 2050(Alzheimer’s Disease International).The apolipoproteinε4(APOE4)allele is the strongest genetic risk factor for late-onset AD(after age 65 years).Apolipoprotein E,a lipid transporter,exists in three variants:ε2,ε3,andε4.APOEε2(APOE2)is protective against AD,APOEε3(APOE3)is neutral,while APOE4 significantly increases the risk.Individuals with one copy of APOE4 have a 4-fold greater risk of developing AD,and those with two copies face an 8-fold risk compared to non-carriers.Even in cognitively normal individuals,APOE4 carriers exhibit brain metabolic and vascular deficits decades before amyloid-beta(Aβ)plaques and neurofibrillary tau tangles emerge-the hallmark pathologies of AD(Reiman et al.,2001,2005;Thambisetty et al.,2010).Notably,studies have demonstrated reduced glucose uptake,or hypometabolism,in brain regions vulnerable to AD in asymptomatic middle-aged APOE4 carriers,long before clinical symptoms arise(Reiman et al.,2001,2005).
基金supported by the Natural Science Foundation of Beijing,No.7232279(to XW)the National Natural Science Foundation of China,No.U21A20400(to QW)Key Project of Beijing University of Chinese Medicine,Nos.2022-JYB-JBZR-004(to XW),2024-JYB-JBZD-043(to CL).
文摘Chronic cerebral hypoperfusion can lead to neuronal necrosis,trigger inflammatory responses,promote white matter damage,and ultimately result in cognitive impairment.Consequently,chronic cerebral hypoperfusion is an important factor influencing the onset and progression of vascular dementia.The myelin sheath is a critical component of white matter,and damage and repair of the white matter are closely linked to myelin sheath integrity.This article reviews the role of microglia in vascular dementia,focusing on their effects on myelin sheaths and the potential therapeutic implications.The findings suggest that ischemia and hypoxia cause disruption of the blood-brain barrier and activate microglia,which may worsen blood-brain barrier damage through the release of matrix-degrading enzymes.Microglia-mediated metabolic reprogramming is recognized as an important driver of inflammation.Damage to the blood-brain barrier and subsequent inflammation can lead to myelin injury and accelerate the progression of vascular dementia.Early activation of microglia is a protective response that contributes to the maintenance of blood-brain barrier integrity through sensing,debris-clearing,and defensive mechanisms.However,prolonged activation can trigger a shift in microglia toward the pro-inflammatory M1 phenotype,resulting in myelin damage and cognitive impairment.Triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells 1 have been identified as potential biomarkers for vascular dementia,as both are closely linked to cognitive decline.Although effective clinical treatments for myelin damage in the central nervous system are currently lacking,researchers are actively working to develop targeted therapies.Several drugs,including nimodipine,dopaminergic agents,simvastatin,biotin,and quetiapine,have been evaluated for clinical use in treating microglial and myelin damage.Future research will face challenges in developing targeted therapeutic strategies for vascular dementia,requiring further investigation into the timing,duration,and specific mechanisms of microglial activation,as well as the exploration of new drug combinations and additional therapeutic targets.
基金supported by FWO(Fonds voor Wetenschappelijk Onderzoek),grant number G07562NFWO(to BB)。
文摘Neuroinflammation is a key process in the pathogenesis of various neurodegenerative diseases,such as multiple sclerosis(MS),Alzheimer's disease,and traumatic brain injury.Even for disorders historically unrelated to neuroinflammation,such as Alzheimer's disease,it is now shown to precede pathological protein aggregations.
文摘The rise of the aging population parallels the rapidly increasing cases of neurological disorders. This puts pressure on scientists and physicians to find novel methods that can prevent and treat neurodegeneration. The brain is made up of a complex network of different cell types that work in tandem to maintain systemic homeostasis.
文摘Type 2 diabetes(T2D)is an insidious disease associated with neural and vascular complications,acceleration of cardiovascular disease,changes in heart function,and premature death.In the newly released article of the Journal of Sport and Health Science,Liang et al.1 describe results from the UK Biobank data showing the benefits of moderate-to-vigorous intensity physical activity(MVPA)on reducing the risks for vascular events in 11,474 adults with T2D and prediabetes.
基金supported by grants from National Key R&D Program of China,No.2023YFC2506100(to JZ)the National Natural Science Foundation of China,No.82171062(to JZ).
文摘Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.
基金supported by the Natural Science Foundation of Guangdong Province(2022A1515010297)the National Natural Science Foundation of China(32100765)+1 种基金the Xiamen Medical Health Science and Technology Project(3502Z20194098)the Shenzhen-Hong Kong-Macao Science and Technology Innovation Project(SGDX2020110309280100).
文摘Dear Editor,Sturge-Weber Syndrome(SWS)is a rare congenital neurocutaneous syndrome[1,2],with an estimated prevalence of 0.19 in 100,000 annually[3].It is a non-hereditary disease linked to a somatic mutation in the GNAQ,GNA11,or GNB2 gene[1],leading to vascular malformations in the cutaneous forehead,cerebral cortex,and eye[1,2].Notably,~70%of pediatric patients diagnosed with SWS exhibit brain calcification(BC)[4],though the prevalence of BC ranges from only 1%in young individuals to>20%in the senior population(>60 years old)[5].Similar to the elderly,BC in pediatric SWS patients is identified as vascular calcification[6,7],whereas BC in pediatric patients with tuberous sclerosis and tumors has been previously described as dystrophic calcification[6].
文摘BACKGROUND Peripheral endovascular intervention(PEVI)is performed using radiation.Radiation has deleterious health consequences for patients and operators.AIM To investigate the gender radiation disparities and procedural outcomes in PEVI.METHODS A prospective observational study was performed in 186 consecutive patients(65±12 years)at an academic medical center from January 2019 to April 2020(mean follow-up of 3.9±3.6 months)comparing the gender radiation disparity and outcomes of PEVI(n=147 underwent intervention,79.0%).Groups were divided into women(n=99,53.2%)and men(n=87,48.4%).Primary endpoints included air kerma,dose area product(DAP),fluoroscopy time,and contrast use.Secondary endpoints included all-cause mortality,acute myocardial infarction,acute kidney injury,stroke,repeat revascularization,major adverse limb event,and the composite of complications.RESULTS Men showed increased DAP compared with women(15221.2±25858.5µGy×m^(2) vs 9251.7±9555.3µGy×m^(2),P=0.047),but no significant difference in air kerma or any other primary endpoints.In the secondary endpoints,no significant diffe-rence was found between gender.CONCLUSION Men had increased DAP indicating more radiation absorption in the exposed area.Gender outcomes showed no difference in complications.Thus,PEVI can be safely performed in men or women.
基金Supported by Science and Technology Department of Yunnan Province-Kunming Medical University,Kunming Medical Joint Special Project-Surface Project,No.202401AY070001-164Yunnan Provincial Clinical Research Center Cardiovascular Diseases-New Technology Research for Development Project for Diagnosis and Treatment Cardiovascular Diseases,No.202102AA310002the Key Technology Research and Device Development Project for Innovative Diagnosis and Treatment of Structural Heart Disease in the Southwest Plateau Region,No.202302AA310045.
文摘Sodium-glucose cotransporter-2(SGLT-2)inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules,consequently augmenting urinary glucose excretion and attenuating blood glucose levels.Extensive clinical investigations have demonstrated their profound cardiovascular efficacy.Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling.Specifically,these inhibitors exhibit promising potential in enhancing pulmonary vascular endothelial cell function,suppressing pulmonary smooth muscle cell proliferation and migration,reversing pulmonary arterial remodeling,and maintaining hemodynamic equilibrium.This comprehensive review synthesizes current literature to delineate the mechanisms by which SGLT-2 inhibitors enhance pulmonary vascular cell function and reverse pulmonary remodeling,thereby offering novel therapeutic perspectives for pulmonary vascular diseases.
文摘AIM: To establish the role of vascular endothelial growth factor (VEGF) in the oncogenesis of human gastric carcinoma more directly. METHODS: The expression of VEGF and its receptor kinase-domain insert containing receptor (KDR) in human gastric cancer tissue were observed by immunohistochemical staining. VEGF levels were manipulated in human gastric cancer cell using eukaryotic expression constructs designed to express the complete VEGF(165) complimentary DNA in either the sense or antisense orientation. The biological changes of the cells were observed in which VEGF was up-regulated or down-regulated. RESULTS: VEGF-positive rate was 50%, and VEGF was mainly localized in the cytoplasm and membrane of the tumor cells, while KDR was mainly located in the membrane of vascular endothelial cells in gastric cancer tissues and peri-cancerous tissue. In 2 cases of 50 specimens, the gastric cancer cells expressed KDR, localized in both the cytoplasm and membrane. Introduction of VEGF(165) antisense into human gastric cancer cells (SGC-7901, immunofluorescence intensity, 31.6%)) resulted in a significant reduction in VEGF-specific messenger RNA and total and cell surface VEGF protein (immunofluorescence intensity, 8.9%) (P【0.05). Conversely, stable integration of VEGF(165) in the sense orientation resulted in an increase in cellular and cell surface VEGF (immunofluorescence intensity, 75.4%) (P【0.05). Lowered VEGF levels were associated with a marked decrease in the growth of nude mouse xenografted tumor (at 33 days postimplantation, tumor volume: 345.40 +/- 136.31 mm3)(P【0.05 vs control SGC-7901 group: 1534.40 +/- 362.88 mm3), whereas up-regulation of VEGF resulted in increased xenografted tumor size (at 33 days postimplantation, tumor volume: 2350.50 +/- 637.70 mm3) (P【0.05 vs control SGC-7901 group). CONCLUSION: This study provides direct evidence that VEGF plays an important role in the oncogenesis of human gastric cancer.
基金Supported by the Health Commission of the Sichuan Province Medical Science and Technology Program,China,No.24WXXT10the Sichuan Province Science and Technology Support Program,China,No.2021YJ0242the 23rd Batch of Student Scientific Research Project Approval of Jiangsu University,China,No.Y23A164.
文摘Pericoronary adipose tissue(PCAT)plays an important role in the pathogenesis and progression of cardiovascular diseases due to its bidirectional communication with the coronary artery wall.In recent years,PCAT parameters measured using coronary computed tomography have emerged as potential noninvasive imaging biomarkers for quantifying coronary artery inflammation,with significant clinical value in the early detection,disease progression assessment,treatment efficacy evaluation,and prognosis prediction of cardiovascular diseases.Furthermore,new technologies such as PCAT radiomics analysis have broadened its potential applications in evaluating coronary plaque vulnerability,predicting cardiovascular events,and improving risk stratification.This review discusses recent advances in PCAT research,focusing on its role in coronary artery disease risk identification and inflammation monitoring,and aims to offer imaging-based insights to support its future clinical use in cardiovascular disease management.
文摘In this article,we comment on the paper by Kakinuma et al published recently.We focus specifically on the diagnosis of uterine pseudoaneurysm,but we also review other uterine vascular anomalies that may be the cause of life-threating hemorrhage and the different causes of uterine pseudoaneurysms.Uterine artery pseudoaneurysm is a complication of both surgical gynecological and nontraumatic procedures.Massive hemorrhage is the consequence of the rupture of the pseudoaneurysm.Uterine artery pseudoaneurysm can develop after obstetric or gynecological procedures,being the most frequent after cesarean or vaginal deliveries,curettage and even during pregnancy.However,there are several cases described unrelated to pregnancy,such as after conization,hysteroscopic surgery or laparoscopic myomectomy.Hemorrhage is the clinical manifestation and it can be life-threatening so suspicion of this vascular lesion is essential for early diagnosis and treatment.However,there are other uterine vascular anomalies that may be the cause of severe hemorrhage,which must be taken into account in the differential diagnosis.Computed tomography angiography and embolization is supposed to be the first therapeutic option in most of them.
基金supported by Natural Science Foundation of China(No.31930067)Natural Science Foundation of Sichuan Province(No.23NSFSC5880)+2 种基金Chengdu Medical Research Project(No.2022004)Natural Science Foundation of Clinical Medical College and Affiliated Hospital of Chengdu University(No.Y202206)Postdoctoral Research and Development Fund of West China Hospital,Sichuan University(No.2023HXBH052).
文摘Vascular stents play an important role in the minimally invasive treatment of vascular diseases,such as vascular stenosis,vascular aneurysm,vascular dissection and vascular atherosclerotic plaque disease.Bare metal stents were initially fabricated;however,the incidence of complications such as thrombosis,inflammation,restenosis,vascular injury,displacement and endoleakage is still high after implantation.To overcome these complications,several strategies for designing functional vascular stents have been carried out.Drug-eluting stents,biodegradable stents and bionic stents were manufactured and investigated.This review aims to comprehensively analyze the vascular diseases suitable for stent implantation treatment,tissue reactions after implantation,the materials and manufacturing techniques used to fabricate vascular stents,the various application scenarios in which they could be used to treat vascular lesions and the development process of vascular stents.Future development trends of vascular stents are expected to prioritize their performance,biocompatibility,and clinical accessibility.The design of vascular stents may be transformed or improved to better fulfill the rehabilitation requirements of vascular disease patients.Finally,various application scenarios may be used to treat vascular or even nonvascular diseases via endovascular access.
基金the National Natural Science Foundation of China(82273919)the HMU Marshal Initiative Funding(HMUMIF-21022).
文摘Objective:Cold exposure may impair vascular function and promote cardiovascular diseases(CVDs)by causing vasoconstriction,hemodynamic changes,and sympathetic activation.Vascular aging,a key factor in CVDs,is linked to phenotypic switching of vascular smooth muscle cells(VSMCs),but its regulatory mechanisms are not fully understood.Materials and methods:We used aged C57BL/6 mice and D-galactose-induced senescent VSMCs to investigate the role of the E3 ligase RLIM in arterial aging.RLIM knockdown and overexpression in vivo were achieved using adeno-associated virus(AAV)vectors.Vascular aging and stiffness were assessed usingβ-galactosidase staining,pulse wave velocity(PWV)measurements,and histological staining.Proteomic profiling was conducted to identify key protein alterations associated with vascular dysfunction and to elucidate underlying mechanisms.Results:RLIM expression was significantly upregulated in the aortae of aged mice and D-galactose-induced senescent VSMCs.AAV-mediated RLIM knockdown significantly attenuated vascular aging,as evidenced by vascular ultrasound and histological assessments.Conversely,RLIM overexpression exacerbated vascular damage.Proteomic analysis revealed that RLIM knockdown in VSMCs from aged mice resulted in increased expression of smooth muscle contractile proteins and decreased levels of inflammatory markers,indicating a phenotypic shift toward a more contractile state.Conclusion:These findings identify RLIM as a key regulator of arterial aging and a promising therapeutic target for age-related cardiovascular diseases.
文摘MANTA vascular closure device is an alternative vascular access closure device that is predominantly designed for large bore arteriotomy procedures.Its implementation to reduce morbidity and mortality following percutaneous procedures including peripheral veno-arterial(VA)-extracorporeal membrane oxygenation(ECMO)in critically ill patients with various severe clinical conditions such as refractory cardiogenic shock remains to be under scientific discussion.The use of the MANTA vascular closure device leads to a sufficient reduction in a number of post-decannulation complications such as bleeding,vascular complications,inflammatory reactions and major amputation.Furthermore,the technical success of percutaneous decannulation of VA-ECMO with the MANTA vascular closure device appears to be safe and effective.It has been reported that MANTA vascular closure device exerted a strict similarity with other vascular surgical systems in safe profile regardless of the indication for its utilization.Overall,the immobilized patients achieved a favorable recovery outcome with MANTA including safe decannulation and low risk of vascular complications.The authors suggest the use of pulse wave distal Doppler technology for early detection of these clinically relevant complications.In conclusion,MANTA vascular closure device seems to be safe and effective technical approach to provide low-risk vascular assess for a long time for severe sick individuals.
基金Supported by the 1.3.5 Project of West China Hospital of Sichuan University(No.2023HXFH043)Sichuan Natural Science Foundation(No.24NSFSC1718).
文摘Dear Editor,We describe a case diagnosed with exudative perifoveal vascular anomalous complex(ePVAC)successfully treated with focal laser photocoagulation(577 nm),achieving a favorable prognosis with best-corrected visual acuity(BCVA)of 20/20.Additionally,we discussed the identification of a possible early-onset non-ePVAC.The ePVAC is characterized as an isolated,aneurysmal abnormity near the macula and usually accompanied by cystic macular edema(ME)[1-2].
基金Supported by Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-037A).
文摘AIM:To repor t the 24mo outcomes of vascular endothelial growth factor(VEGF)inhibitors for myopic choroidal neovascularization(mCNV)in routine clinical practice and simultaneously evaluated the real-world safety.METHODS:The patients who received intravitreal injections of VEGF inhibitors of either ranibizumab(0.5 mg)or conbercept(0.5 mg)for mCNV were analyzed from 1 January 2017 to 1 January 2022.The primary outcome variables were mean change in best-corrected visual acuity(BCVA)and central macular thickness(CMT)changes.The secondary outcome variables included IOP changes,the period of mCNV re-treatment,and ocular adverse events.RESULTS:Totally 83 patients aged 56.40±15.36y with axial length 29.67±2.09 mm were included.In visual acuity,the mean logMAR BCVA at baseline was 0.81±0.43.After the initial improvement at 1,3,and 6mo(P<0.05),from month 12 onwards,no statistical difference compared to baseline was found.The mean CMT from 1mo onwards had a statistically significant decrease compared with baseline CMT(P<0.05).The regression model showed better baseline BCVA and thicker baseline CMT,significantly associated with the final outcomes.In univariate analysis,choosing 3+pro re nata(PRN)as the initial injection treatment regimen was associated with better BCVA at 24mo[hazard ratio(HR)=-0.65,95%CI:-1.23,-0.07,P=0.048].However,the difference was not significant in multivariate analysis(HR=-0.59,95%CI:-1.21,0.03,P=0.089).Regarding mCNV recurrence,the mean period(P=0.725)and the proportion of mCNV reactivation(P=1.00)were similar between ranibizumab and conbercept.Kaplan-Meier plot also analyzed that the median time of re-injection was not significantly different among gender,drug,and initial injection treatment regimen.No systemic adverse events related to the therapy were observed.CONCLUSION:BCVA gains achieved by the end of our study maintain generally sustained at the 24-mo follow-up.The findings also indicate that ranibizumab and conbercept demonstrate comparable efficacy and safety profiles.Additionally,intravitreal anti-VEGF therapy using 1+PRN regimen,offers certain advantages in both efficacy and cost-effectiveness.
文摘BACKGROUND The heterogeneous group of disorders called peripheral vascular diseases(PVDs)occurs outside the heart and brain tissue to cause ischemia and severe health complications.Diagnosis accuracy is essential in starting appropriate patient management at the proper time.Modern medicine considers skin biopsies crucial diagnostic tools that yield histopathological and molecular evidence for examining PVD-related microvascular changes.AIM To evaluate skin biopsy applications in PVD diagnostics through artistic analysis of technical processes and examination of pathological and innovative molecular indicators.METHODS A systematic review of randomized controlled trials and original studies about skin biopsy utility in PVD diagnosis used PubMed,Scopus,and EMBASE search platforms.The reviewed studies met specific entry requirements,while all case reports and review articles remained excluded.RESULTS A total of 22 studies suited the research criteria that were evaluated.Researchers emphasized the value of skin biopsies for identifying inflammatory from non-inflammatory PVDs.At the same time,they detect systemic sclerosis and diabetic vasculopathy abnormalities of micro-vessels and identify endothelial dysfunction through measurements of vascular endothelial growth factor and intercellular adhesion molecule-1 and endothelial nitric oxide synthase markers.Skin biopsies require further improvement because they cause patient discomfort and produce variable diagnostic results that specialists must interpret.CONCLUSION Skin biopsies enable essential diagnostic findings about PVD and improve patient detection.The development of standardized biopsy procedures and molecular diagnosis techniques should be studied to advance PVD diagnoses in clinical practice.