Progressive modifications in submarine topography and shorelines drastically affect tidal dynamics in bays.This study examines the influence of topographic slope,bay length,and driving forces on tidal currents followi...Progressive modifications in submarine topography and shorelines drastically affect tidal dynamics in bays.This study examines the influence of topographic slope,bay length,and driving forces on tidal currents following land reclamation.Tidal equa-tions are analytically solved using infinite series,deriving expressions for tidal levels and currents in narrow bays with varying topog-raphy.Tidal levels,influenced by topographic variations,are characterized by amplitude and phase lag of their complex amplitude.These levels demonstrate high sensitivity to longitudinal slope variations but remain relatively stable under lateral slope changes.Un-der constant topographic slopes,even minor changes in bay length can drastically modify amplitude and phase lag,highlighting the sensitivity of tidal dynamics to geometric alterations.Tidal velocity notably increases with steeper longitudinal slopes and modestly rises with elevated lateral slopes.However,changes in longitudinal and lateral slopes do not considerably alter flow patterns.While external forces predominantly regulate tidal velocity with negligible effects on flow patterns,endogenous resistance influences veloci-ty but minimally impacts flow structure.These findings enhance the understanding of tidal responses to geometric and topographic changes,providing valuable guidance for land reclamation projects and coastal management strategies.展开更多
Currently,the design of advanced compressor blades has reached the full ThreeDimensional(3D)modeling stage.When analyzing the reasons for the failure of popular corner stall prediction criteria for axial compressors t...Currently,the design of advanced compressor blades has reached the full ThreeDimensional(3D)modeling stage.When analyzing the reasons for the failure of popular corner stall prediction criteria for axial compressors to predict the corner flow state in modern compressor3D blades with end-bend and composite bend-sweep characteristics,it is believed that,in addition to the dihedral angle factor in the corner,the variation of the dihedral angle along the flow path is an important factor that has not been considered to date.In light of this,this study first uses the characteristic effects of the diffuser on the deceleration and pressure increase in airflow to design a series of physical models of varying dihedral angle diffusers that are equivalent to compressors.Based on these models,a quantization parameter is established to characterize the development speed of the intersection of boundary layers at the corner under varying dihedral angle and adverse pressure gradient conditions.After combining this with the effects of secondary flow,a Modified diffusion factor DJ(MDJ)is developed to describe the development of corner flow from the leading edge of the blade to its trailing edge under varying dihedral angle conditions.Finally,based on a compressor cascade database,an improved criterion for predicting corner stall in axial compressors using the MDJ diffusion factor is proposed.The validation results,based on extensive experimental data of compressor blades,reveal that this improved criterion can significantly enhance the accuracy of corner stall predictions in the 3D blades of modern compressors compared to currently used prediction criteria,by taking into account the effects of variations in the dihedral angle.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
Casting experiments and macro-micro numerical simulations were conducted to examine the microstructure characteristics of K439B nickel-based superalloy casting with varying cross-sections during the gravity investment...Casting experiments and macro-micro numerical simulations were conducted to examine the microstructure characteristics of K439B nickel-based superalloy casting with varying cross-sections during the gravity investment casting process.Firstly,microstructure analysis was conducted on the casting using scanning electron microscopy(SEM)and electron backscatter diffraction(EBSD).Subsequently,calculation of the phase diagram and differential scanning calorimetry(DSC)tests were conducted to determine the macro-micro simulation parameters of the K439B alloy,and the cellular automaton finite element(CAFE)method was employed to develop macro-micro modeling of K439B nickel-based superalloy casting with varying cross-sections.The experimental results revealed that the ratio of the average grain area increased from the edge to the center of the sections as the ratio of the cross-sectional area increased.The simulation results indicated that the average grain area increased from 0.885 to 0.956 mm^(2)as the ratio of the cross-sections increased from 6꞉1 to 12꞉1.The experiment and simulation results showed that the grain size became more heterogeneous and the grain shape became more irregular with an increase in the ratio of the cross-sectional area of the casting.CAFE modeling was an effective method to simulate the microstructure evolution of the K439B alloy and ensure the accuracy of the simulation.展开更多
Water scarcity and environment deterioration have become main constraints to sustainable economic and social development.Scientifically assessing Water Resources Carrying Capacity(WRCC)is essential for the optimal all...Water scarcity and environment deterioration have become main constraints to sustainable economic and social development.Scientifically assessing Water Resources Carrying Capacity(WRCC)is essential for the optimal allocation of regional water resources.The hilly area at the northern foot of Yanshan Mountains is a key water conservation zone and an important water source for Beijing,Tianjin and Hebei.Grasping the current status and temporal trends of water quality and WRCC in representative small watersheds within this region is crucial for supporting rational water resources allocation and environment protection efforts.This study focuses on Pingquan City,a typical watershed in northern Hebei Province.Firstly,evaluation index systems for surface water quality,groundwater quality and WRCC were estab-lished based on the Pressure-State-Response(PSR)framework.Then,comprehensive evaluations of water quality and WRCC at the sub-watershed scale were conducted using the Varying Fuzzy Pattern Recogni-tion(VFPR)model.Finally,the rationality of the evaluation results was verified,and future scenarios were projected.Results showed that:(1)The average comprehensive evaluation scores for surface water and groundwater quality in the sub-watersheds were 1.44 and 1.46,respectively,indicating that both met the national Class II water quality standard and reflected a high-quality water environment.(2)From 2010 to 2020,the region's WRCC steadily improved,with scores rising from 2.99 to 2.83 and an average of 2.90,suggesting effective water resources management in Pingquan City.(3)According to scenario-based predic-tion,WRCC may slightly decline between 2025 and 2030,reaching 2.92 and 2.94,respectively,relative to 2020 levels.Therefore,future efforts should focus on strengthening scientific management and promoting the efficient use of water resources.Proactive measures are necessary to mitigate emerging contradiction and ensure the long-term stability and sustainability of the water resources system in the region.The evalua-tion system and spatiotemporal evolution patterns proposed in this study can provide a scientific basis for refined water resource management and ecological conservation in similar hilly areas.展开更多
In this paper,a meshfree Jacobi point interpolation(MJPI)approach for the dynamic analysis of sandwich laminated conical and cylindrical shells with varying thickness is presented.The theoretical formulations for sand...In this paper,a meshfree Jacobi point interpolation(MJPI)approach for the dynamic analysis of sandwich laminated conical and cylindrical shells with varying thickness is presented.The theoretical formulations for sandwich laminated shells with varying thickness are established using the modified variational principle within the framework of first-order shear deformation theory(FSDT).The displacement components of the sandwich shell are expanded using the MJPI shape function and Fourier series in the meridional and circumferential directions,respectively.The accuracy and reliability of the proposed MJPI shape function are validated against numerical results from published literature and the commercial simulation tool Abaqus.Finally,the effects of different parameters such as thickness gradient,thickness power index and boundary condition on the free vibration and dynamic response of the sandwich laminated shell are investigated.展开更多
Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was poin...Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.展开更多
Magnetic-liquid double suspension bearing(MLDSB)is mainly supported by electromagnetic suspension and supplemented by hydrostatic supporting.Its bearing capacity and stiffness can be greatly improved,and then it is su...Magnetic-liquid double suspension bearing(MLDSB)is mainly supported by electromagnetic suspension and supplemented by hydrostatic supporting.Its bearing capacity and stiffness can be greatly improved,and then it is suitable for the occasions of medium speed,heavy load.When the bearing system is excited by periodic force,the flow q and current i regulated by the double-closed-loop control mechanism change periodically.Then the risk of parametric resonance in MLDSB is greatly aggravated by the change of the parameter system,which seriously affects its operation stabil-ity and reliability.Therefore,this paper intends to study the resonance characteristics of the parame-ter system of MLDSB.Firstly,Marshall-Duffing equation of the parametric system is established by taking the flow q and the current i as variables respectively.Then,by using the asymptotic method,the occurrence condition and variation rule of the principal,1/2 Harmonic and 1/3 Harmonic para-metric resonance are solved.The results show that only the 1/2 Harmonic resonance of the flow q parameter varying system occurs accompanied by the resonance condition of high frequency.The principal,1/2 Harmonic and 1/3 Harmonic parametric resonance of the current i occur accompanied by the resonance condition of high frequency.And the 1/2 Harmonic resonance of the current i oc-curs accompanied by the non-single value bifurcation and dynamic bifurcation.The paper can pro-vide theoretical reference for the parameter design and stable operation of MLDSB.展开更多
This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combin...This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.展开更多
Time-varying stiffness is one of the most important dynamic characteristics of rolling element bearings.The method of analyzing the elements in the bearing stiffness matrix is usually adopted to investigate the charac...Time-varying stiffness is one of the most important dynamic characteristics of rolling element bearings.The method of analyzing the elements in the bearing stiffness matrix is usually adopted to investigate the characteristics of bearing stiffness.Linear mapping structure of the bearing stiffness matrix is helpful to understand the varying compliance excitation and its influence on vibration transmission.In this study,a method to analyze the mapping structure of bearing stiffness matrix is proposed based on the singular value decomposition of block matrices in the stiffness matrix.Not only does this method have the advantages of coordinate transformation independence and unit independence,but also the analysis procedure involved is geometrically intuitive.The time-varying stiffness matrix of double-row tapered bearing is calculated and analyzed using the proposed method under two representative load cases.The principal stiffnesses and principal axes defined in the method together indicate the dominant and insignificant stiffness properties with the corresponding directions,and the vibration transmission properties are also revealed.Besides,the coupling behaviors between different shaft motions are found during the analysis of mapping structure.The mechanism of the generation of varying compliance excitation is also revealed.展开更多
As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a succes...As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.展开更多
High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of ...High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).展开更多
To solve the problem of robust servo performance of Flight Environment Testbed(FET)of Altitude Ground Test Facilities(AGTF) over the whole operational envelope, a two-degree-offreedom μ synthesis method based on Line...To solve the problem of robust servo performance of Flight Environment Testbed(FET)of Altitude Ground Test Facilities(AGTF) over the whole operational envelope, a two-degree-offreedom μ synthesis method based on Linear Parameter Varying(LPV) schematic is proposed, and meanwhile a new structure frame of μ synthesis control on two degrees of freedom with double integral and weighting functions is presented, which constitutes a core support part of the paper. Aimed at the problem of reference command's rapid change, one freedom feed forward is adopted, while another freedom output feedback is used to meet good servo tracking as well as disturbance and noise rejection; furthermore, to overcome the overshoot problem and acquire dynamic tuning,the integral is introduced in inner loop, and another integral controller is used in outer loop in order to guarantee steady errors; additionally, two performance weighting functions are designed to achieve robust specialty and control energy limit considering the uncertainties in system. As the schedule parameters change over large flight envelope, the stability of closed-loop LPV system is proved using Lyapunov inequalities. The simulation results show that the relative tracking errors of temperature and pressure are less than 0.5% with LPV μ synthesis controller. Meanwhile, compared with non-LPV μ synthesis controller in large uncertainty range, the proposed approach in this research can ensure robust servo performance of FET over the whole operational envelope.展开更多
Pipes are often used to transport multiphase flows in many engineering applications.The total fluid flow density inside a pipe may vary with time and space.In this paper,a simply supported pipe conveying a variable de...Pipes are often used to transport multiphase flows in many engineering applications.The total fluid flow density inside a pipe may vary with time and space.In this paper,a simply supported pipe conveying a variable density flow is modeled theoretically,and its stability and nonlinear vibrations are investigated in detail.The variation of the flow density is simulated using a mathematical function.The equation governing the vibration of the pipe is derived according to Euler-Bernoulli beam theory.When the internal flow density varies with time,the pipe is excited parametrically.The stability of the pipe is determined by Floquet theory.Some simple parametric and combination resonances are determined.For a higher mass ratio(mean flow mass/pipe structural mass),higher flow velocity,or smaller end axial tension,the pipe becomes unstable more easily due to wider parametric resonance regions.In the subcritical flow velocity regime,the vibrations of the pipe are periodic and quasiperiodic for simple and combination resonances,respectively.However,in the supercritical regime,the vibrations of the pipe exhibit much richer dynamics including periodic,multiperiodic,quasiperiodic,and chaotic behaviors.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to de...Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network.展开更多
The paper presents a detailed analysis of ordinary and dark energy density of the cosmos based on two different but complimentary theories. First, and starting from the concept of the speed of light being an average o...The paper presents a detailed analysis of ordinary and dark energy density of the cosmos based on two different but complimentary theories. First, and starting from the concept of the speed of light being an average over multi-fractals, we use Magueijo-Smolin’s ingenious revision of Einstein’s special relativity famous formula E = mc2 to a doubly special formula which includes the Planck energy as invariant to derive the ordinary energy density E(O) = mc2/22 and the dark energy density E(D) = mc2(21/22) wheremis the mass andcis the speed of light. Second we use the topological theory of pure gravity to reach the same result thus confirming the correctness of the theory of varying speed of light as well as the COBE, WMAP and Type 1a supernova cosmological measurements.展开更多
As critical components in modern aerospace productions,rolling element bearings(REBs)generally work under varying speed conditions,which brings great challenges to their operating health monitoring.Some novel time–fr...As critical components in modern aerospace productions,rolling element bearings(REBs)generally work under varying speed conditions,which brings great challenges to their operating health monitoring.Some novel time–frequency decomposition(TFD)algorithms are established recently to extract nonlinear features from the non-stationary signals effectively,which are promising for realizing fault diagnosis of REBs under varying speed conditions.However,numerous personal experiences must be incorporated and the anti-noise performance of these methods needs to be further enhanced.Given these issues,a synchronous chirp mode extraction(SCME)-based REB fault diagnosis method is proposed for the health monitoring of REBs under varying speed conditions in this study.It mainly consists of following two parts.(a)The shaft rotational frequency(SRF)is initially estimated from the low-frequency band of the vibration signal.Simultaneously,an adaptive refining strategy is incorporated to obtain a suitable bandwidth parameter.(b)A cycle-one-step estimation frame is constructed to extract synchronous modes from the envelope waveform of the vibration signal.Meanwhile,a synchronous mode spectrum(SMS)is generated using the information of the extracted synchronous modes,which is a novel REBs fault diagnosis technique with tacholess and resampling-free.In contrast to the current TFD algorithms,the proposed method needs fewer input parameters and owns a well anti-noise performance because there is no iterative optimization in the procedure of construction of SMS.As a result,the health conditions of REBs are evaluated by detecting the exhibited features in the SMS.Simulations and experiments are conducted to validate the effectiveness of the proposed method in terms of REB fault diagnosis.Analysis results demonstrate that the proposed method outperforms the current TFD algorithm and the conventional order tracking technique for fault diagnosis of REB under varying speed conditions.展开更多
The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the ef...The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the efficiency of the simulation. The accuracy of the approximation approach may be affected by three factors: matrix for decomposition, distribution of frequency interpolation nodes and elements for interpolation. The influence of these factors on the accuracy of this approach is examined and the following conclusions are drawn. The SRM based on the root decomposition of the lagged coherency matrix exhibits greater accuracy than the SRM based on the root decomposition of the cross spectral matrix. The equal energy distribution of frequency interpolation nodes proposed in this study is more effective than the counter pith with an equal spacing. Elements for interpolation do not have much of an effect on the accuracy, so interpolation of the elements of the decomposed matrix is recommended because it is less complicated from a computational efficiency perspective.展开更多
A new roll shifting strategy with varying stroke and varying step was investigated,Two characteristic parameters including cat ear height and gap contour smoothness were introduced to assess the effect of shifting str...A new roll shifting strategy with varying stroke and varying step was investigated,Two characteristic parameters including cat ear height and gap contour smoothness were introduced to assess the effect of shifting strategy on roll wear,and the relation between characteristic parameters and shifting strategy was established.Both varying stroke and varying step can reduce cat ear height and gap contour smoothness,so the shifting strategy with varying stroke and varying step is better than the one with either varying stroke or varying step,Based on the effect of shifting control parameters on characteristic parameters of roll wear,the selection principle of these shifting control parameters was gained.A case study was conducted to validate the proposed roll shifting strategy,reducing uncontrollable quartic loading gap contour,improving strip profile and extending rolling length of a rolling campaign.展开更多
基金supported by the National Natural Sci-ence Foundation of China(No.U2106204)the Shanxi Water Conservancy Science and Technology Re-search and Extension Project(No.2023ZF19).
文摘Progressive modifications in submarine topography and shorelines drastically affect tidal dynamics in bays.This study examines the influence of topographic slope,bay length,and driving forces on tidal currents following land reclamation.Tidal equa-tions are analytically solved using infinite series,deriving expressions for tidal levels and currents in narrow bays with varying topog-raphy.Tidal levels,influenced by topographic variations,are characterized by amplitude and phase lag of their complex amplitude.These levels demonstrate high sensitivity to longitudinal slope variations but remain relatively stable under lateral slope changes.Un-der constant topographic slopes,even minor changes in bay length can drastically modify amplitude and phase lag,highlighting the sensitivity of tidal dynamics to geometric alterations.Tidal velocity notably increases with steeper longitudinal slopes and modestly rises with elevated lateral slopes.However,changes in longitudinal and lateral slopes do not considerably alter flow patterns.While external forces predominantly regulate tidal velocity with negligible effects on flow patterns,endogenous resistance influences veloci-ty but minimally impacts flow structure.These findings enhance the understanding of tidal responses to geometric and topographic changes,providing valuable guidance for land reclamation projects and coastal management strategies.
基金co-supported by the National Natural Science Foundation of China(No.52406041)the China Postdoctoral Science Foundation(No.2025M774200)the National Science and Technology Major Project of China(No.2019-Ⅱ-0003-0023)。
文摘Currently,the design of advanced compressor blades has reached the full ThreeDimensional(3D)modeling stage.When analyzing the reasons for the failure of popular corner stall prediction criteria for axial compressors to predict the corner flow state in modern compressor3D blades with end-bend and composite bend-sweep characteristics,it is believed that,in addition to the dihedral angle factor in the corner,the variation of the dihedral angle along the flow path is an important factor that has not been considered to date.In light of this,this study first uses the characteristic effects of the diffuser on the deceleration and pressure increase in airflow to design a series of physical models of varying dihedral angle diffusers that are equivalent to compressors.Based on these models,a quantization parameter is established to characterize the development speed of the intersection of boundary layers at the corner under varying dihedral angle and adverse pressure gradient conditions.After combining this with the effects of secondary flow,a Modified diffusion factor DJ(MDJ)is developed to describe the development of corner flow from the leading edge of the blade to its trailing edge under varying dihedral angle conditions.Finally,based on a compressor cascade database,an improved criterion for predicting corner stall in axial compressors using the MDJ diffusion factor is proposed.The validation results,based on extensive experimental data of compressor blades,reveal that this improved criterion can significantly enhance the accuracy of corner stall predictions in the 3D blades of modern compressors compared to currently used prediction criteria,by taking into account the effects of variations in the dihedral angle.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
基金supported by the National Science and Technology Major Project of China(No.J2019-VI-0004-0117)。
文摘Casting experiments and macro-micro numerical simulations were conducted to examine the microstructure characteristics of K439B nickel-based superalloy casting with varying cross-sections during the gravity investment casting process.Firstly,microstructure analysis was conducted on the casting using scanning electron microscopy(SEM)and electron backscatter diffraction(EBSD).Subsequently,calculation of the phase diagram and differential scanning calorimetry(DSC)tests were conducted to determine the macro-micro simulation parameters of the K439B alloy,and the cellular automaton finite element(CAFE)method was employed to develop macro-micro modeling of K439B nickel-based superalloy casting with varying cross-sections.The experimental results revealed that the ratio of the average grain area increased from the edge to the center of the sections as the ratio of the cross-sectional area increased.The simulation results indicated that the average grain area increased from 0.885 to 0.956 mm^(2)as the ratio of the cross-sections increased from 6꞉1 to 12꞉1.The experiment and simulation results showed that the grain size became more heterogeneous and the grain shape became more irregular with an increase in the ratio of the cross-sectional area of the casting.CAFE modeling was an effective method to simulate the microstructure evolution of the K439B alloy and ensure the accuracy of the simulation.
基金financially supported by China Geological Survey Project(No.DD20220954)Open Funding Project of the Key Laboratory of Groundwater Sciences and Engineering,Ministry of Natural Resources(No.SK202301-4)+2 种基金Science and Technology Innovation Foundation of Comprehensive Survey&Command Center for Natural Resources(No.KC20240003)Yanzhao Shanshui Science and Innovation Fund of Langfang Integrated Natural Resources Survey Center,China Geological Survey(No.YZSSJJ202401-001)Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2022KFKTC009).
文摘Water scarcity and environment deterioration have become main constraints to sustainable economic and social development.Scientifically assessing Water Resources Carrying Capacity(WRCC)is essential for the optimal allocation of regional water resources.The hilly area at the northern foot of Yanshan Mountains is a key water conservation zone and an important water source for Beijing,Tianjin and Hebei.Grasping the current status and temporal trends of water quality and WRCC in representative small watersheds within this region is crucial for supporting rational water resources allocation and environment protection efforts.This study focuses on Pingquan City,a typical watershed in northern Hebei Province.Firstly,evaluation index systems for surface water quality,groundwater quality and WRCC were estab-lished based on the Pressure-State-Response(PSR)framework.Then,comprehensive evaluations of water quality and WRCC at the sub-watershed scale were conducted using the Varying Fuzzy Pattern Recogni-tion(VFPR)model.Finally,the rationality of the evaluation results was verified,and future scenarios were projected.Results showed that:(1)The average comprehensive evaluation scores for surface water and groundwater quality in the sub-watersheds were 1.44 and 1.46,respectively,indicating that both met the national Class II water quality standard and reflected a high-quality water environment.(2)From 2010 to 2020,the region's WRCC steadily improved,with scores rising from 2.99 to 2.83 and an average of 2.90,suggesting effective water resources management in Pingquan City.(3)According to scenario-based predic-tion,WRCC may slightly decline between 2025 and 2030,reaching 2.92 and 2.94,respectively,relative to 2020 levels.Therefore,future efforts should focus on strengthening scientific management and promoting the efficient use of water resources.Proactive measures are necessary to mitigate emerging contradiction and ensure the long-term stability and sustainability of the water resources system in the region.The evalua-tion system and spatiotemporal evolution patterns proposed in this study can provide a scientific basis for refined water resource management and ecological conservation in similar hilly areas.
文摘In this paper,a meshfree Jacobi point interpolation(MJPI)approach for the dynamic analysis of sandwich laminated conical and cylindrical shells with varying thickness is presented.The theoretical formulations for sandwich laminated shells with varying thickness are established using the modified variational principle within the framework of first-order shear deformation theory(FSDT).The displacement components of the sandwich shell are expanded using the MJPI shape function and Fourier series in the meridional and circumferential directions,respectively.The accuracy and reliability of the proposed MJPI shape function are validated against numerical results from published literature and the commercial simulation tool Abaqus.Finally,the effects of different parameters such as thickness gradient,thickness power index and boundary condition on the free vibration and dynamic response of the sandwich laminated shell are investigated.
文摘Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.
基金Supported by the National Natural Science Foundation of China(No.52075468)General Project of Natural Science Foundation of Hebei Prov-ince(No.E2020203052)+2 种基金Youth Fund Project of Scientific Research Project of Hebei University(No.QN202013)Basic Innovation Scientif-ic Research Cultivation Project of Yanshan University(No.2021LGZD003)the Shaanxi Key Laboratory of Hydraulic Technology Fund(No.YYJS2022KF14).
文摘Magnetic-liquid double suspension bearing(MLDSB)is mainly supported by electromagnetic suspension and supplemented by hydrostatic supporting.Its bearing capacity and stiffness can be greatly improved,and then it is suitable for the occasions of medium speed,heavy load.When the bearing system is excited by periodic force,the flow q and current i regulated by the double-closed-loop control mechanism change periodically.Then the risk of parametric resonance in MLDSB is greatly aggravated by the change of the parameter system,which seriously affects its operation stabil-ity and reliability.Therefore,this paper intends to study the resonance characteristics of the parame-ter system of MLDSB.Firstly,Marshall-Duffing equation of the parametric system is established by taking the flow q and the current i as variables respectively.Then,by using the asymptotic method,the occurrence condition and variation rule of the principal,1/2 Harmonic and 1/3 Harmonic para-metric resonance are solved.The results show that only the 1/2 Harmonic resonance of the flow q parameter varying system occurs accompanied by the resonance condition of high frequency.The principal,1/2 Harmonic and 1/3 Harmonic parametric resonance of the current i occur accompanied by the resonance condition of high frequency.And the 1/2 Harmonic resonance of the current i oc-curs accompanied by the non-single value bifurcation and dynamic bifurcation.The paper can pro-vide theoretical reference for the parameter design and stable operation of MLDSB.
基金The National High Technology Research and Development Program of China (863 Program) (No. 2007AA11Z202)the National Key Technology R & D Program of China during the 11th Five-Year Plan Period(No. 2006BAJ18B03)the Fundamental Research Funds for the Central Universities (No. DUT10RC(3) 112)
文摘This paper considers the problem of time varying congestion pricing to determine optimal time-varying tolls at peak periods for a queuing network with the interactions between buses and private cars.Through the combined applications of the space-time expanded network(STEN) and the conventional network equilibrium modeling techniques,a multi-class,multi-mode and multi-criteria traffic network equilibrium model is developed.Travelers of different classes have distinctive value of times(VOTs),and travelers from the same class perceive their travel disutility or generalized costs on a route according to different weights of travel time and travel costs.Moreover,the symmetric cost function model is extended to deal with the interactions between buses and private cars.It is found that there exists a uniform(anonymous) link toll pattern which can drive a multi-class,multi-mode and multi-criteria user equilibrium flow pattern to a system optimum when the system's objective function is measured in terms of money.It is also found that the marginal cost pricing models with a symmetric travel cost function do not reflect the interactions between traffic flows of different road sections,and the obtained congestion pricing toll is smaller than the real value.
基金the Joint Funds of the National Natural Science Foundation of China(Grant No.U1834202).
文摘Time-varying stiffness is one of the most important dynamic characteristics of rolling element bearings.The method of analyzing the elements in the bearing stiffness matrix is usually adopted to investigate the characteristics of bearing stiffness.Linear mapping structure of the bearing stiffness matrix is helpful to understand the varying compliance excitation and its influence on vibration transmission.In this study,a method to analyze the mapping structure of bearing stiffness matrix is proposed based on the singular value decomposition of block matrices in the stiffness matrix.Not only does this method have the advantages of coordinate transformation independence and unit independence,but also the analysis procedure involved is geometrically intuitive.The time-varying stiffness matrix of double-row tapered bearing is calculated and analyzed using the proposed method under two representative load cases.The principal stiffnesses and principal axes defined in the method together indicate the dominant and insignificant stiffness properties with the corresponding directions,and the vibration transmission properties are also revealed.Besides,the coupling behaviors between different shaft motions are found during the analysis of mapping structure.The mechanism of the generation of varying compliance excitation is also revealed.
基金National Natural Science Foundation of China!(No.6 97740 33)
文摘As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.
文摘High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).
文摘To solve the problem of robust servo performance of Flight Environment Testbed(FET)of Altitude Ground Test Facilities(AGTF) over the whole operational envelope, a two-degree-offreedom μ synthesis method based on Linear Parameter Varying(LPV) schematic is proposed, and meanwhile a new structure frame of μ synthesis control on two degrees of freedom with double integral and weighting functions is presented, which constitutes a core support part of the paper. Aimed at the problem of reference command's rapid change, one freedom feed forward is adopted, while another freedom output feedback is used to meet good servo tracking as well as disturbance and noise rejection; furthermore, to overcome the overshoot problem and acquire dynamic tuning,the integral is introduced in inner loop, and another integral controller is used in outer loop in order to guarantee steady errors; additionally, two performance weighting functions are designed to achieve robust specialty and control energy limit considering the uncertainties in system. As the schedule parameters change over large flight envelope, the stability of closed-loop LPV system is proved using Lyapunov inequalities. The simulation results show that the relative tracking errors of temperature and pressure are less than 0.5% with LPV μ synthesis controller. Meanwhile, compared with non-LPV μ synthesis controller in large uncertainty range, the proposed approach in this research can ensure robust servo performance of FET over the whole operational envelope.
基金The authors are grateful to the National Natural Science Foundation of China(Grants 51679167,51979193,and 51608059)for financial support.
文摘Pipes are often used to transport multiphase flows in many engineering applications.The total fluid flow density inside a pipe may vary with time and space.In this paper,a simply supported pipe conveying a variable density flow is modeled theoretically,and its stability and nonlinear vibrations are investigated in detail.The variation of the flow density is simulated using a mathematical function.The equation governing the vibration of the pipe is derived according to Euler-Bernoulli beam theory.When the internal flow density varies with time,the pipe is excited parametrically.The stability of the pipe is determined by Floquet theory.Some simple parametric and combination resonances are determined.For a higher mass ratio(mean flow mass/pipe structural mass),higher flow velocity,or smaller end axial tension,the pipe becomes unstable more easily due to wider parametric resonance regions.In the subcritical flow velocity regime,the vibrations of the pipe are periodic and quasiperiodic for simple and combination resonances,respectively.However,in the supercritical regime,the vibrations of the pipe exhibit much richer dynamics including periodic,multiperiodic,quasiperiodic,and chaotic behaviors.
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
基金Supported by National Natural Science Foundation of China under Grant Nos.11275017 and 11173028
文摘Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network.
文摘The paper presents a detailed analysis of ordinary and dark energy density of the cosmos based on two different but complimentary theories. First, and starting from the concept of the speed of light being an average over multi-fractals, we use Magueijo-Smolin’s ingenious revision of Einstein’s special relativity famous formula E = mc2 to a doubly special formula which includes the Planck energy as invariant to derive the ordinary energy density E(O) = mc2/22 and the dark energy density E(D) = mc2(21/22) wheremis the mass andcis the speed of light. Second we use the topological theory of pure gravity to reach the same result thus confirming the correctness of the theory of varying speed of light as well as the COBE, WMAP and Type 1a supernova cosmological measurements.
基金supported by the National Natural Science Foundation of China(Nos.51705349,51875376,51875375)the China Postdoctoral Science Foundation(No.2019T120456)+4 种基金the National Key ResearchDevelopment Program of China(No.2018YFB2003303)the Natural Science Foundation for CollegesUniversities in Jiangsu Province(No.20KJB460006)Open Research Fund Program of Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles.The authors also would like to thank the Lab E026 in University of Ottawa for data collection.
文摘As critical components in modern aerospace productions,rolling element bearings(REBs)generally work under varying speed conditions,which brings great challenges to their operating health monitoring.Some novel time–frequency decomposition(TFD)algorithms are established recently to extract nonlinear features from the non-stationary signals effectively,which are promising for realizing fault diagnosis of REBs under varying speed conditions.However,numerous personal experiences must be incorporated and the anti-noise performance of these methods needs to be further enhanced.Given these issues,a synchronous chirp mode extraction(SCME)-based REB fault diagnosis method is proposed for the health monitoring of REBs under varying speed conditions in this study.It mainly consists of following two parts.(a)The shaft rotational frequency(SRF)is initially estimated from the low-frequency band of the vibration signal.Simultaneously,an adaptive refining strategy is incorporated to obtain a suitable bandwidth parameter.(b)A cycle-one-step estimation frame is constructed to extract synchronous modes from the envelope waveform of the vibration signal.Meanwhile,a synchronous mode spectrum(SMS)is generated using the information of the extracted synchronous modes,which is a novel REBs fault diagnosis technique with tacholess and resampling-free.In contrast to the current TFD algorithms,the proposed method needs fewer input parameters and owns a well anti-noise performance because there is no iterative optimization in the procedure of construction of SMS.As a result,the health conditions of REBs are evaluated by detecting the exhibited features in the SMS.Simulations and experiments are conducted to validate the effectiveness of the proposed method in terms of REB fault diagnosis.Analysis results demonstrate that the proposed method outperforms the current TFD algorithm and the conventional order tracking technique for fault diagnosis of REB under varying speed conditions.
基金National Natural Science Foundation of China under Grant No.51308191 and Grant No.51278382the Fundamental Research Funds for the Central Universities of China under Grant No.2013B01514+1 种基金the Chang Jiang Scholars Program and the Innovative Research Team Program of the Ministry of Education of China under Grant No.IRT1125the 111 Project(No.B13024)
文摘The spectral representation method (SRM) is widely used to simulate spatially varying ground motions. This study focuses on the approximation approach to the SRM based on root decomposition, which can improve the efficiency of the simulation. The accuracy of the approximation approach may be affected by three factors: matrix for decomposition, distribution of frequency interpolation nodes and elements for interpolation. The influence of these factors on the accuracy of this approach is examined and the following conclusions are drawn. The SRM based on the root decomposition of the lagged coherency matrix exhibits greater accuracy than the SRM based on the root decomposition of the cross spectral matrix. The equal energy distribution of frequency interpolation nodes proposed in this study is more effective than the counter pith with an equal spacing. Elements for interpolation do not have much of an effect on the accuracy, so interpolation of the elements of the decomposed matrix is recommended because it is less complicated from a computational efficiency perspective.
基金Project(50974039) supported by the National Natural Science Foundation of China
文摘A new roll shifting strategy with varying stroke and varying step was investigated,Two characteristic parameters including cat ear height and gap contour smoothness were introduced to assess the effect of shifting strategy on roll wear,and the relation between characteristic parameters and shifting strategy was established.Both varying stroke and varying step can reduce cat ear height and gap contour smoothness,so the shifting strategy with varying stroke and varying step is better than the one with either varying stroke or varying step,Based on the effect of shifting control parameters on characteristic parameters of roll wear,the selection principle of these shifting control parameters was gained.A case study was conducted to validate the proposed roll shifting strategy,reducing uncontrollable quartic loading gap contour,improving strip profile and extending rolling length of a rolling campaign.