期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Vacuoles of Candida yeast as a specialized niche for Helicobacter pylori 被引量:4
1
作者 Farideh Siavoshi Parastoo Saniee 《World Journal of Gastroenterology》 SCIE CAS 2014年第18期5263-5273,共11页
Helicobacter pylori(H.pylori)are resistant to hostile gastric environments and antibiotic therapy,reflecting the possibility that they are protected by an ecological niche,such as inside the vacuoles of human epitheli... Helicobacter pylori(H.pylori)are resistant to hostile gastric environments and antibiotic therapy,reflecting the possibility that they are protected by an ecological niche,such as inside the vacuoles of human epithelial and immune cells.Candida yeast may also provide such an alternative niche,as fluorescently labeled H.pylori were observed as fast-moving and viable bacterium-like bodies inside the vacuoles of gastric,oral,vaginal and foodborne Candida yeasts.In addition,H.pylori-specific genes and proteins were detected in samples extracted from these yeasts.The H.pylori present within these yeasts produce peroxiredoxin and thiol peroxidase,providing the ability to detoxify oxygen metabolites formed in immune cells.Furthermore,these bacteria produce urease and VacA,two virulence determinants of H.pylori that influence phago-lysosome fusion and bacterial survival in macrophages.Microscopic observations of H.pylori cells in new generations of yeasts along with amplification of H.pylori-specific genes from consecutive generations indicate that new yeasts can inherit the intracellular H.pylori as part of their vacuolar content.Accordingly,it is proposed that yeast vacuoles serve as a sophisticated niche that protects H.pylori against the environmental stresses and provides essential nutrients,including ergosterol,for its growth and multiplication.This intracellular establishment inside the yeast vacuole likely occurred long ago,leading to the adaptation of H.pylori to persist in phagocytic cells.The presence of these bacteria within yeasts,including foodborne yeasts,along with the vertical transmission of yeasts from mother to neonate,provide explanations for the persistence and propagation of H.pylori in the human population.This Topic Highlight reviews and discusses recent evidence regarding the evolutionary adaptation of H.pylori to thrive in host cell vacuoles. 展开更多
关键词 HELICOBACTER PYLORI Intracellular CANDIDA vacuole
暂未订购
V-ATPase,ScNhxlp and Yeast Vacuole Fusion 被引量:2
2
作者 Quan-Sheng Qiu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2012年第4期167-171,共5页
Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos. It is a central cellular reaction that plays important roles in signal transductio... Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos. It is a central cellular reaction that plays important roles in signal transduction, protein sorting and subcellular compartmentation. Recent progress in understanding the roles of ion transporters in vacuole fusion in yeast is summarized in this article. It is becoming increasingly evident that the vacuolar proton pump V-ATPase and vacuolar Na+/H+ antiporter ScNhxlp are key components of the vacuole fusion machinery in yeast. Yeast ScNhxlp regulates vacuole fusion by controlling the luminal pH. V-ATPases serve a dual role in vacuolar integrity in which they regulate both vacuole fusion and fission reactions in yeast. Fission defects are epistatic to fusion defects. Vacuole fission depends on the proton translocation activity of the V-ATPase; by contrast, the fusion reaction does not need the transport activity but requires the physical presence of the proton pump. V0, the membrane-integral sector of the V-ATPase, forms trans-complexes between the opposing vacuoles in the terminal phase of vacuole fusion where the V0 trans-complexes build a continuous proteolipid channel at the fusion site to mediate the bilayer fusion. 展开更多
关键词 ScNhxlp V-ATPASE vacuole fusion FISSION YEAST
原文传递
Vacuole import and degradation pathway: Insights into a specialized autophagy pathway
3
作者 Abbas A Alibhoy Hui-Ling Chiang 《World Journal of Biological Chemistry》 CAS 2011年第11期239-245,共7页
Glucose deprivation induces the synthesis of pivotagluconeogenic enzymes such as fructose-1,6-bisphos-phatase, malate dehydrogenase, phosphoenolpyruvatecarboxykinase and isocitrate lyase in Saccharomycescerevisiae. Ho... Glucose deprivation induces the synthesis of pivotagluconeogenic enzymes such as fructose-1,6-bisphos-phatase, malate dehydrogenase, phosphoenolpyruvatecarboxykinase and isocitrate lyase in Saccharomycescerevisiae. However, following glucose replenishment,these gluconeogenic enzymes are inactivated and de-graded. Studies have characterized the mechanismsby which these enzymes are inactivated in response toglucose. The site of degradation of these proteins hasalso been ascertained to be dependent on the dura-tion of starvation. Glucose replenishment of short-termstarved cells results in these proteins being degradedin the proteasome. In contrast, addition of glucose tocells starved for a prolonged period results in theseproteins being degraded in the vacuole. In the vacuoledependent pathway, these proteins are sequestered inspecialized vesicles termed vacuole import and degra-dation (Vid). These vesicles converge with the endo-cytic pathway and deliver their cargo to the vacuolefor degradation. Recent studies have identified thatinternalization, as mediated by actin polymerization, isessential for delivery of cargo proteins to the vacuolefor degradation. In addition, components of the targetof rapamycin complex 1 interact with cargo proteins during glucose starvation. Furthermore, Tor1p dissoci-ates from cargo proteins following glucose replenish-ment. Future studies will be needed to elaborate on the importance of internalization at the plasma membrane and the subsequent import of cargo proteins into Vid vesicles in the vacuole dependent degradation pathway. 展开更多
关键词 vacuole IMPORT and degradation Fructose-1 6-bisphosphatase vacuole PROTEASOME AUTOPHAGY Target of RAPAMYCIN complex 1 Actin polymerization ENDOCYTOSIS
暂未订购
Influence of vacuoles with gas–liquid inclusions on the thermobaric destruction conditions of natural quartz under dynamic heating in an RF-TICP torch system
4
作者 苗龙 聂明卿 +7 位作者 Yuri Mihailovich GRISHIN 王晓宇 朱政羲 宋家辉 梁福文 何梓豪 田丰 王宁飞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期138-147,共10页
In the present work,the turbulent mixing process of a polydisperse quartz particle flow with a plasma stream generated by a radio-frequency(RF)inductively coupled plasma torch was numerically studied.The thermobaric s... In the present work,the turbulent mixing process of a polydisperse quartz particle flow with a plasma stream generated by a radio-frequency(RF)inductively coupled plasma torch was numerically studied.The thermobaric stress in the quartz particles under dynamic heating in a heterogeneous plasma flow was determined by a two-stage approximation approach.The effect of the presence of vacuoles in natural quartz on the particle thermobaric destruction conditions was studied.It was found that the equivalent thermal and baric stresses in quartz particles may significantly increase in the presence of vacuoles within a small gas volume fraction.The influence of the regime and energetic working conditions of an RF inductively coupled plasma torch system on the particle thermobaric destruction conditions was examined,and a recommendation was given to promote the degree of thermobaric destruction of quartz particles,which is of substantial importance for improving the overall enrichment efficiency of quartz concentrates. 展开更多
关键词 high purity quartz dynamic heating vacuole with gas–liquid inclusions thermobaric destruction radio-frequency inductively coupled plasma torch
在线阅读 下载PDF
How sodium gets sequestered in the vacuoles of salinized plants?
5
作者 Francisco M.Gámez-Arjona JoséM.Pardo Francisco J.Quintero 《Molecular Plant》 2025年第12期2045-2047,共3页
Under saline/sodic stress,plants accumulate sodium(Na+)ions in their vacuoles to avert toxicity in the cytoplasm while simultaneously improving osmotic adjustment to the hypertonic soil solution and apoplast.This is a... Under saline/sodic stress,plants accumulate sodium(Na+)ions in their vacuoles to avert toxicity in the cytoplasm while simultaneously improving osmotic adjustment to the hypertonic soil solution and apoplast.This is a readily observable fact in every land species.However,how this universal process is achieved biochemically has become a matter of debate(Shabala et al.,2020).The mainstream view is that Na+proton(H^(+))antiport protein(s)accumulate Na+in the vacuolar lumen,against the ion electrochemical gradient,through the exchange with H^(+) that have been previously internalized by H^(+)pumps residing at the tonoplast. 展开更多
关键词 sodium vacuoles sodium sequestration salinized plants saline sodic stress improving osmotic adjustment ion electrochemical gradien osmotic adjustment
原文传递
Vacuole Integrity Maintained by DUF300 Proteins Is Required for Brassinosteroid Signaling Regulation 被引量:5
6
作者 Qinsong Liu Thomas Vain +7 位作者 Corrado Viotti Siamsa M, Doyle Danuse Tarkowska Ondrej Novak Cyril Zipfel Folke Sitbon Stephanie Robert Daniel Hofius 《Molecular Plant》 SCIE CAS CSCD 2018年第4期553-567,共15页
Brassinosteroid (BR) hormone signaling controls multiple processes during plant growth and development and is initiated at the plasma membrane through the receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) togeth... Brassinosteroid (BR) hormone signaling controls multiple processes during plant growth and development and is initiated at the plasma membrane through the receptor kinase BRASSINOSTEROID INSENSITIVE1 (BRI1) together with co-receptors such as BRI1-ASSOClATED RECEPTOR KINASE1 (BAK1). BRI1 abun- dance is regulated by endosomal recycling and vacuolar targeting, but the role of vacuole-related proteins in BR receptor dynamics and BR responses remains elusive. Here, we show that the absence of two DUF300 domain-containing tonoplast proteins, LAZARUS1 (LAZl) and LAZl HOMOLOG1 (LAZlH1), causes vacuole morphology defects, growth inhibition, and constitutive activation of BR signaling. Intriguingly, tonoplast accumulation of BAK1 was substantially increased and appeared causally linked to enhanced BRI1 trafficking and degradation in lazl lazlhl plants. Since unrelated vacuole mutants exhibited normal BR responses, our findings indicate that DUF300 proteins play distinct roles in the regulation of BR signaling by maintaining vacuole integrity required to balance subcellular BAK1 pools and BR receptor distribution. 展开更多
关键词 brassinosteroid signaling vacuole integrity DUF300 proteins TONOPLAST Arabidopsis
原文传递
Glucose alleviates cadmium toxicity by increasing cadmium fi xation in root cell wall and sequestration into vacuole in Arabidopsis 被引量:4
7
作者 Yuan-Zhi Shi Xiao-Fang Zhu +2 位作者 Jiang-Xue Wan Gui-Xin Li Shao-Jian Zheng 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2015年第10期830-837,共8页
Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadm... Glucose (Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium (Cd) concentration, and rescued Cd-induced chlorosis in Arabidopsis thaliana (Columbia ecotype, Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot significantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd (Glu t Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it significantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu t Cd treatment compared with Cd treatment alone, which was in accordance with the&nbsp;significant upregulation of the expression of tonoplast-localized metal transporter genes, suggesting that com-partmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increas-ing Cd fixation in the root cell wall and sequestration into the vacuoles. 展开更多
关键词 ARABIDOPSIS cadmium tolerance GLUCOSE plant cell wall plant vacuole
原文传递
Structure and Function of TPC1 Vacuole SV Channel Gains Shape 被引量:4
8
作者 Rainer Hedrich Thomas D. Mueller +1 位作者 Dirk Becker Irene Marten 《Molecular Plant》 SCIE CAS CSCD 2018年第6期764-775,共12页
Plants and animals in endosomes operate TPCI/SV-type cation channels. All plants harbor at least one TPC1 gene. Although the encoded SV channel was firstly discovered in the plant vacuole membrane two decades ago, its... Plants and animals in endosomes operate TPCI/SV-type cation channels. All plants harbor at least one TPC1 gene. Although the encoded SV channel was firstly discovered in the plant vacuole membrane two decades ago, its biological function has remained enigmatic. Recently, the structure of a plant TPC1/SV channel protein was determined. Insights into the 3D topology has now guided site-directed mutation ap- proaches, enabling structure-function analyses of TPC1/SV channels to shed new light on earlier findings. Fou2 plants carrying a hyperactive mutant form of TPC1 develop wounding stress phenotypes. Recent studies with fou2 and mutants that lack functional TPC1 have revealed atypical features in local and long-distance stress signaling, providing new access to the previously mysterious biology of this vacuolar cation channel type in planta. 展开更多
关键词 Ca^2+ sensors TPC1/SV channel vacuole membrane voltage voltage sensor
原文传递
Turnover of diacylglycerol kinase 4 by cytoplasmic acidification induces vacuole morphological change and nuclear DNA degradation in the early stage of pear self-incompatibility response 被引量:2
9
作者 Xiao-Xiong Kong Jia-Wei Mei +3 位作者 Jing Zhang Xiao Liu Ju-You Wu Chun-Lei Wang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第12期2123-2135,共13页
Pear has an S-RNase-based gametophytic selfincompatibility(SI)system.Nuclear DNA degradation is a typical feature of incompatible pollen tube death,and is among the many physiological functions of vacuoles.However,the... Pear has an S-RNase-based gametophytic selfincompatibility(SI)system.Nuclear DNA degradation is a typical feature of incompatible pollen tube death,and is among the many physiological functions of vacuoles.However,the specific changes that occur in vacuoles,as well as the associated regulatory mechanism in pear SI,are currently unclear.Although research in tobacco has shown that decreased activity of diacylglycerol kinase(DGK)results in the morphological change of pollen tube vacuole,whether DGK regulates the pollen tube vacuole of tree plants and whether it occurs in SI response,is currently unclear.We found that DGK activity is essential for pear pollen tube growth,and DGK4 regulates pollen tube vacuole morphology following its high expression and deposition at the tip and shank edge of the pollen tube of pear.Specifically,incompatible S-RNase may induce cytoplasmic acidification of the pollen tube by inhibiting V-ATPase V0 domain a1 subunit gene expression as early as 30 min after treatment,when the pollen tube is still alive.Cytoplasmic acidification induced by incompatible S-RNase results in reduced DGK4 abundance and deposition,leading to morphological change of the vacuole and fragmentation of nuclear DNA,which indicates that DGK4 is a key factor in pear SI response. 展开更多
关键词 cytoplasmic acidification diacylglycerol kinase PEAR SELF-INCOMPATIBILITY vacuole V-ATPASE
原文传递
Homotypic Vacuole Fusion Requires VTI11 and Is Regulated by Phosphoinositides 被引量:2
10
作者 Sang Won Han Maria Fernanda Rodriguez-Welsh Marcela Rojas-Pierce 《Molecular Plant》 SCIE CAS CSCD 2014年第6期1026-1040,共15页
Most plant cells contain a large central vacuole that is essential to maintain cellular turgor. We report a new mutant allele of VTI11 that implicates the SNARE protein VTI11 in homotypic fusion of protein storage and... Most plant cells contain a large central vacuole that is essential to maintain cellular turgor. We report a new mutant allele of VTI11 that implicates the SNARE protein VTI11 in homotypic fusion of protein storage and lytic vacuoles. Fusion of the multiple vacuoles present in vtill mutants could be induced by treatment with Wortmannin and LY294002, which are inhibitors of Phosphatidylinositol 3-Kinase (PI3K). We provide evidence that Phosphatidylinositol 3-Phosphate (Ptdlns(3)P) regulates vacuole fusion in vtill mutants, and that fusion of these vacuoles requires intact microtubules and actin filaments. Finally, we show that Wortmannin also induced the fusion of guard cell vacuoles in fava beans, where vacuoles are naturally fragmented after ABA-induced stomata closure. These results suggest a ubiquitous role of phosphoinositides in vacuole fusion, both during the development of the large central vacuole and during the dynamic vacuole remodeling that occurs as part of stomata movements. 展开更多
关键词 vacuole SNARE PHOSPHOINOSITIDES membrane fusion Wortmannin.
原文传递
Protein Domains Involved in Assembly in the Endoplasmic Reticulum Promote Vacuolar Delivery when Fused to Secretory GFP, Indicating a Protein Quality Control Pathway for Degradation in the Plant Vacuole 被引量:2
11
作者 Ombretta Foresti Francesca De Marchis +4 位作者 Maddalena de Virgilio Eva M. Klein Sergio Arcioni Michele Bellucci Alessandro Vitale 《Molecular Plant》 SCIE CAS CSCD 北大核心 2008年第6期1067-1076,共10页
The correct folding and assembly of newly synthesized secretory proteins are monitored by the protein quality control system of the endoplasmic reticulum (ER). Through interactions with chaperones such as the bindin... The correct folding and assembly of newly synthesized secretory proteins are monitored by the protein quality control system of the endoplasmic reticulum (ER). Through interactions with chaperones such as the binding protein (BiP) and other folding helpers, quality control favors productive folding and sorts for degradation defective proteins. A major route for quality control degradation identified in yeast, plants, and animals is constituted by retrotranslocation from the ER to the cytosol and subsequent disposal by the ubiquitin/proteasome system, but alternative routes involving the vacuole have been identified in yeast. In this study, we have studied the destiny of sGFP418, a fusion between a secretory form of GFP and a domain of the vacuolar protein phaseolin that is involved in the correct assembly of phaseolin and in BiP recognition of unassembled subunits. We show that sGFP418, despite lacking the phaseolin vacuolar sorting signal, is delivered to the vacuole and fragmented, in a process that is inhibited by the secretory traffic inhibitor brefeldin A. Moreover, a fusion between GFP and a domain of the maize storage protein γ-zein involved in zein polymerization also undergoes post-translational fragmentation similar to that of sGFP418. These results show that defective secretory proteins with permanently exposed sequences normally involved in oligomerization can be delivered to the vacuole by secretory traffic. This strongly suggests the existence of a plant vacuolar sorting mechanism devoted to the disposal of defective secretory proteins. 展开更多
关键词 Endoplasmic reticulum protein degradation protein traffic vacuole.
原文传递
The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains 被引量:2
12
作者 Peng Liu Liang Sun +15 位作者 Yu Zhang Yongjun Tan Yuxing Zhu Can Peng Jiurong Wang Huili Yan Donghai Mao Guohua Liang Gang Liang Xiaoxiang Li Yuntao Liang Feng Wang Zhenyan He Wenbang Tang Daoyou Huang Caiyan Chen 《Molecular Plant》 SCIE CSCD 2024年第11期1733-1752,共20页
Rice(Oryza sativa)provides>20%of the consumed calories in the human diet.However,rice is also a leading source of dietary cadmium(Cd)that seriously threatens human health.Deciphering the genetic network that underl... Rice(Oryza sativa)provides>20%of the consumed calories in the human diet.However,rice is also a leading source of dietary cadmium(Cd)that seriously threatens human health.Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain.In this study,we identified a QTL gene,OsCS1,which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice.OsCS1 is predominantly expressed in leaf vascular parenchyma cells,where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole.In this trafficking process,OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles.There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies.Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter,thereby promoting OsCS1 expression.Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice.Collectively,our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice. 展开更多
关键词 rice OsCS1/OsMTP11 grain Cd TGN–PVC–vacuole transport allelic variation
原文传递
Simplification of vacuole structure during plant cell death triggered by culture filtrates of Erwinia carotovora 被引量:1
13
作者 Yumi Hirakawa Toshihisa Nomura +1 位作者 Seiichiro Hasezawa Takumi Higaki 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2015年第1期127-135,共9页
Vacuoles are suggested to play crucial roles in plant defense-related cell death. During programmed cell death, previous live cell imaging studies have observed vacuoles to become simpler in structure and have implica... Vacuoles are suggested to play crucial roles in plant defense-related cell death. During programmed cell death, previous live cell imaging studies have observed vacuoles to become simpler in structure and have implicated this simplification as a prelude to the vacuole's rupture and consequent lysis of the plasma membrane. Here, we examined dynamics of the vacuole in cell cycle-synchronized tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2) cells during ceil death induced by application of culture filtrates of Erwinia carotovora. The filtrate induced death in about 90% of the cells by 24 h. Prior to cell death, vacuole shape simplified and endoplasmic actin filaments disassembled; however, the vacuoles did not rupture until after plasma membrane integrity was lost. Instead of facilitating rupture, the simplification of vacuole structure might play a role in the retrieval of membrane components needed for defense-related cell death. 展开更多
关键词 Actin filaments defense-related cell death Erwiniacarotovora tobacco BY-2 cells vacuoleS
原文传递
Maize ZmVPP5 is a truncated Vacuole H^+-PPase that confers hypersensitivity to salt stress 被引量:3
14
作者 Xiaoliang Sun Weiwei Qi +3 位作者 Yihong Yue Huiling Ling Gang Wang Rentao Song 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2016年第6期518-528,共11页
In plants, Vacuole H^+-PPases(VPPs) are important Aproton pumps and encoded by multiple genes. In addition to full-length VPPs, several truncated forms are expressed, but their biological functions are unknown. In ... In plants, Vacuole H^+-PPases(VPPs) are important Aproton pumps and encoded by multiple genes. In addition to full-length VPPs, several truncated forms are expressed, but their biological functions are unknown. In this study, we functionally characterized maize vacuole H^+-PPase 5(ZmVPP5), a truncated VPP in the maize genome. Although ZmVPP5 shares high sequence similarity with ZmVPP1 ZmVPP5 lacks the complete structure of the conserved proton transport and the inorganic pyrophosphatase-related domain. Phylogenetic analysis suggests that ZmVPP5 might be derived from an incomplete gene duplication event. ZmVPP5 is expressed in multiple tissues, and ZmVPP5 was detected in the plasma membrane, vacuole membrane and nuclei of maize cells. The overexpression of ZmVPP5 in yeast cells caused a hypersensitivity to salt stress. Transgenic maize lines with overexpressed ZmVPP5 also exhibited the salt hypersensitivity phenotype. A yeast two-hybrid analysis identified the ZmBag6 like protein as a putative ZmVPP5-interacting protein. The results of bimolecular luminescence complementation(Bi LC)assay suggest an interaction between ZmBag6-like protein and ZmVPP5 in vivo. Overall, this study suggests that ZmVPP5 might act as a VPP antagonist and participate in the cellular response to salt stress. Our study of ZmVPP5 has expanded the understanding of the origin and functions of truncated forms of plant VPPs. 展开更多
关键词 Maize salt stress vacuole H~+-PPases ZmBag6-like protein ZmVPP5
原文传递
Oculopharyngeal Weakness, Hypophrenia, Deafness, and Impaired Vision: A Novel Autosomal Dominant Myopathy with Rimmed Vacuoles 被引量:1
15
作者 Ting Chen Xiang-Hui Lu +6 位作者 Hui-Fang Wang Rui Ban Hua-Xu Liu Qiang Shi Qian Wang Xi Yin Chuan-Qiang Pu 《Chinese Medical Journal》 SCIE CAS CSCD 2016年第15期1805-1810,共6页
Background: Myopathies with rimnled vacuoles are a heterogeneous group of muscle disorders with progressive muscle weakness and varied clinical manifestations but similar features in muscle biopsies. Here, we describ... Background: Myopathies with rimnled vacuoles are a heterogeneous group of muscle disorders with progressive muscle weakness and varied clinical manifestations but similar features in muscle biopsies. Here, we describe a novel autosomal dominant myopathy with rimmed vacuoles in a large family with 11 patients of three generations affected. Methods: A clinical study including family history, obstetric, pediatric, and development history was recorded. Clinical examinations including physical examination, electromyography (EMG), serum creatine kinase (CK), bone X-rays, and brain magnetic resonance imaging (MRI) were performed in this family. Open muscle biopsies were performed on the proband and his mother. To find the causative gene, the whole-exome sequencing was carried out. Results: Disease onset was from adolescence to adulthood, but the affected patients of the third generation presented an earlier onset and more severe clinical manifestations than the older generations. Clinical features were characterized as dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision. However, not every patient manifested all symptoms. Serum CK was mildly elevated and EMG indicated a myopathic pattern. Brain MRI showed cerebellum and brain stem mildly atrophy. Rimmed vacuoles and inclusion bodies were observed in muscle biopsy. The whole-exome sequencing was performed, but the causative gene has not been found. Conclusions: We reported a novel autosomal dominant myopathy with rimmed vacuoles characterized by dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision, but the causative gene has not been tbund and needs further study. 展开更多
关键词 Inclusion Body Rimmed vacuoles Whole-exome Sequencing
原文传递
Multiple functions of the vacuole in plant growth and fruit quality 被引量:2
16
作者 Yu-Tong Jiang Lu-Han Yang +1 位作者 Ali Ferjani Wen-Hui Lin 《Molecular Horticulture》 2021年第1期165-177,共13页
Vacuoles are organelles in plant cells that play pivotal roles in growth and developmental regulation.The main functions of vacuoles include maintaining cell acidity and turgor pressure,regulating the storage and tran... Vacuoles are organelles in plant cells that play pivotal roles in growth and developmental regulation.The main functions of vacuoles include maintaining cell acidity and turgor pressure,regulating the storage and transport of substances,controlling the transport and localization of key proteins through the endocytic and lysosomal-vacuolar transport pathways,and responding to biotic and abiotic stresses.Further,proteins localized either in the tonoplast(vacuolar membrane)or inside the vacuole lumen are critical for fruit quality.In this review,we summarize and discuss some of the emerging functions and regulatory mechanisms associated with plant vacuoles,including vacuole biogenesis,vacuole functions in plant growth and development,fruit quality,and plant-microbe interaction,as well as some innovative research technology that has driven advances in the field.Together,the functions of plant vacuoles are important for plant growth and fruit quality.The investigation of vacuole functions in plants is of great scientific significance and has potential applications in agriculture. 展开更多
关键词 vacuole BIOGENESIS Plant growth and development Protein trafficking Fruit quality
在线阅读 下载PDF
Tracking tonoplast protein behaviors in intact vacuoles
17
《Science Foundation in China》 CAS 2017年第1期17-17,共1页
Subject Code:C02With the support by the National Natural Science Foundation of China,the research team led by Prof.Lin Jinxing(林金星)at the College of Biological Sciences&Biotechnology,Beijing Forestry University... Subject Code:C02With the support by the National Natural Science Foundation of China,the research team led by Prof.Lin Jinxing(林金星)at the College of Biological Sciences&Biotechnology,Beijing Forestry University,overcame the limitations of existing techniques and expanded the study of protein characteristics from the plasma membrane to the vacuole membranes.This study was published in Molecular Plant(2016,DOI: 展开更多
关键词 Tracking tonoplast protein behaviors in intact vacuoles 金星 行星
原文传递
Microtubule Structure and Male Sterility in a Gene-Cytoplasmic Male Sterile Line of Rice, Zhen Shan 97A 被引量:4
18
作者 叶秀麟 杨子德 +1 位作者 徐是雄 梁承邺 《Acta Botanica Sinica》 CSCD 2003年第2期183-192,共10页
Histological changes that occur during microsporogenesis are documented in a gene-cytoplasmic male sterile rice ( Oryza saliva L.) line, Zhen Shan 97A, its maintainer line, Zhen Shan 97B, and the restorer line, Ce64 o... Histological changes that occur during microsporogenesis are documented in a gene-cytoplasmic male sterile rice ( Oryza saliva L.) line, Zhen Shan 97A, its maintainer line, Zhen Shan 97B, and the restorer line, Ce64 of a Mine hybrid rice production system. In the restorer line, Ce64, the developing microsporocytes have dense cytoplasm and a distinct set of circumferential microtubules around the nucleus. Successive cytokinesis results in the formation of tetrads. The microtubules within the cells of tetrads and microspores radiate from the surface of the nucleus towards the outer edge of the cytoplasm. Subsequent pollen development is normal. During the course of microspore formation tubulin speckles can be found in the cytoplasm. The general pattern of development and microtubule organization in the maintainer lined Zhen Shan 97B, is similar to Ce64, except that a few more tubulin speckles appear during microspore formation. In the case of the mate sterile line, Zhen Shan 97A, a number of abnormalities can be discerned during early microsporogenesis. These include vacuoles forming within the developing microsporocyte and faintly stained microtubules with no defined distribution pattern. Prominent tubulin speckles are common within the cytoplasm. For those microsporocytes that undergo meiosis, no defined organizational patterns of microtubules can be found within the tetrad. All microspores abort soon after. Abnormalities and defects in microtubule organization observed in Zhen Shan 97A showed that complex interactions between the cytoplasm and the nucleus began at very early stage of microsporocyte development. 展开更多
关键词 Oryza saliva cytoplasmic male sterility microtubules microsporocyte vacuole tubulin speckles
在线阅读 下载PDF
Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein 被引量:105
19
作者 Yang Cao Daniel J Klionsky 《Cell Research》 SCIE CAS CSCD 2007年第10期839-849,共11页
The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Ra... The most striking morphological feature of eukaryotic cells is the presence of various membrane-enclosed compartments. These compartments, including organelles and transient transport intermediates, are not static. Rather, dynamic exchange of proteins and membrane is needed to maintain cellular homeostasis. One of the most dramatic examples of membrane mobilization is seen during the process ofmacroautophagy. Macroautophagy is the primary cellular pathway for degradation of long-lived proteins and organelles. In response to environmental cues, such as starvation or other types of stress, the cell produces a unique membrane structure, the phagophore. The phagophore sequesters cytoplasm as it forms a double-membrane cytosolic vesicle, an autophagosome. Upon completion, the autophagosome fuses with a lysosome or a vacuole in yeast, which delivers hydrolases that break down the inner autophagosome membrane along with its cargo, and the resulting macromolecules are released back into the cytosol for reuse. Autophagy is therefore a recycling process, allowing cells to survive periods of nutrient limitation; however, it has a wider physiological role, participating in development and aging, and also in protection against pathogen invasion, cancer and certain neurodegenerative diseases. In many cases, the role ofautophagy is identified through studies of an autophagy-related protein, Atg6/Beclin 1. This protein is part of a lipid kinase complex, and recent studies suggest that it plays a central role in coordinating the cytoprotective function ofautophagy and in opposing the cellular death process of apoptosis. Here, we summarize our current knowledge ofAtg6/Beclin 1 in different model organisms and its unique function in the cell. 展开更多
关键词 LYSOSOME PHOSPHOINOSITIDES protein targeting stress vacuole YEAST
在线阅读 下载PDF
Diagnostic value of sperm DNA fragmentation and sperm high-magnification for predicting outcome of assisted reproduction treatment 被引量:13
20
作者 Gemma López Rafael Lafuente +2 位作者 Miguel A Checa Ramón Carreras Mario Brassesco 《Asian Journal of Andrology》 SCIE CAS CSCD 2013年第6期790-794,I0008-I0009,共7页
Over the last years, major improvements in the field of male infertility diagnosis have been achieved. The aim of this study was to determine the diagnostic usefulness of sperm DNA integrity and sperm vacuolisation fo... Over the last years, major improvements in the field of male infertility diagnosis have been achieved. The aim of this study was to determine the diagnostic usefulness of sperm DNA integrity and sperm vacuolisation for predicting outcome in infertile couples undergoing in vitroferti lisation (IVF) and intracytoplasmic sperm injection (ICSI) treatments. A cohort study from 152 infertile couples undergoing sperm DNA fragmentation and high-magnification tests prior to an assisted reproduction treatment was designed. We found that the most predictive cutoff for pregnancy was 25.5% of DNA fragmentation with a negative predictive value of 72.7% (P=0.02). For the degree of vacuolisation, the best predictor of pregnancy was 73.5% of vacuolated sperm grades Ⅲ + Ⅳ with a negative predictive value of 39.4% (P=0.09), which was not statistically significant. In conclusion, sperm DNA fragmentation greater than 25.5% could be associated with higher probability of failure IVF treatment. Regarding the results of the sperm analysis at high magnification, they do not allow us to predict whether or not oatients will become pregnant. 展开更多
关键词 DNA fragmentation HIGH-MAGNIFICATION IVF vacuoleS
暂未订购
上一页 1 2 4 下一页 到第
使用帮助 返回顶部