The V/O5-WO3-MoOy'TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM...The V/O5-WO3-MoOy'TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM) and mercury porosimetry. The NOx conversion and durability were investigated on a pilot plant test set under the actual operational conditions of a coal fired boiler. The catalyst monolith had good formability with mass per- centage of V : W : Mo : TiO2 : fiber glass = 1 : 4.5 : 4.5 : 72 : 18. Vanadium, tungsten and molybdenum species were highly dispersed on anatase TiO2 without causing the transformation of anatase TiO2 to ruffle by calcining under a current of air at 450℃ for 4.5 h, but there were some degrees of crystal distortion. The catalyst particle sizes were almost uniform with close pile-up and the pore structure was regular with complete macro-pore formation and large specific surface area. The NOx conversion was sensitive to temperature but nearly insensitive to NH3. The catalyst showed strong adaptability to NOx concentration with activity above 80% in the range of 615 1640 mg.m-3. Within the range of 720-8640 h continuous operation, the NOx conversion dropped at a rate of about 1% reduction per 600 h.展开更多
采用超声波浸渍法、传统浸渍法制备一系列V2O5-WO3/TiO2催化剂,对催化剂的反应活性进行考察。研究表明:与普通浸渍法相比,超声波浸渍法可以提高催化剂的脱硝效率,拓宽催化反应的温度窗口。超声波浸渍时间和超声波功率对催化剂的反应活...采用超声波浸渍法、传统浸渍法制备一系列V2O5-WO3/TiO2催化剂,对催化剂的反应活性进行考察。研究表明:与普通浸渍法相比,超声波浸渍法可以提高催化剂的脱硝效率,拓宽催化反应的温度窗口。超声波浸渍时间和超声波功率对催化剂的反应活性有较大影响。浸渍时间增加,催化剂脱硝效率也随之提高。超声波功率增加,催化剂的脱硝效率先提高后降低。在超声波频率28 kHz,超声波功率400 W,超声作用时间1.5 h,超声水粉比为100 mL H2O/10 g TiO2的条件下,制得的V2O5-WO3/TiO2脱硝催化剂脱硝效率接近100%。通过SEM对制备的催化剂进行表征,超声波浸渍法制备的催化剂的活性成分在载体上分散更加均匀。展开更多
基金Supported by the Science and Technology Development Planning of Shandong Province(2011GSF11716)China Scholarship Council for Researching in University of Birmingham
文摘The V/O5-WO3-MoOy'TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM) and mercury porosimetry. The NOx conversion and durability were investigated on a pilot plant test set under the actual operational conditions of a coal fired boiler. The catalyst monolith had good formability with mass per- centage of V : W : Mo : TiO2 : fiber glass = 1 : 4.5 : 4.5 : 72 : 18. Vanadium, tungsten and molybdenum species were highly dispersed on anatase TiO2 without causing the transformation of anatase TiO2 to ruffle by calcining under a current of air at 450℃ for 4.5 h, but there were some degrees of crystal distortion. The catalyst particle sizes were almost uniform with close pile-up and the pore structure was regular with complete macro-pore formation and large specific surface area. The NOx conversion was sensitive to temperature but nearly insensitive to NH3. The catalyst showed strong adaptability to NOx concentration with activity above 80% in the range of 615 1640 mg.m-3. Within the range of 720-8640 h continuous operation, the NOx conversion dropped at a rate of about 1% reduction per 600 h.
基金Supported by Fundamental Research Funds for Central Universities(HEUCF201403002)Advanced Technique Project Funds of the Manufacture and Information Ministry
文摘采用超声波浸渍法、传统浸渍法制备一系列V2O5-WO3/TiO2催化剂,对催化剂的反应活性进行考察。研究表明:与普通浸渍法相比,超声波浸渍法可以提高催化剂的脱硝效率,拓宽催化反应的温度窗口。超声波浸渍时间和超声波功率对催化剂的反应活性有较大影响。浸渍时间增加,催化剂脱硝效率也随之提高。超声波功率增加,催化剂的脱硝效率先提高后降低。在超声波频率28 kHz,超声波功率400 W,超声作用时间1.5 h,超声水粉比为100 mL H2O/10 g TiO2的条件下,制得的V2O5-WO3/TiO2脱硝催化剂脱硝效率接近100%。通过SEM对制备的催化剂进行表征,超声波浸渍法制备的催化剂的活性成分在载体上分散更加均匀。