For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two no...For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two nonlinear approximate inverses, and gave the detailed convergence analysis. In this paper, we focus on the convergence analysis of this corrected Uzawa algorithm, some inaccuracies in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] are pointed out, and a corrected convergence theorem is presented. A special case of this modified Uzawa algorithm is also discussed.展开更多
In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is pre...In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is presented and the upper bounds of the convergence rates are derived.Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm,the convergence rate is uniformly bounded away from 1 if τh^-2 is kept bounded,where τ is the time step size and h the space mesh size.展开更多
This paper deals with the spectral approximation of an incompressible viscous/inviscid coupled model. An efficient Uzawa algorithm based on a new variational formulation is proposed. The generalization to the coupl...This paper deals with the spectral approximation of an incompressible viscous/inviscid coupled model. An efficient Uzawa algorithm based on a new variational formulation is proposed. The generalization to the coupling between the Navier Stokes equations and the Euler equations is discussed.展开更多
In this paper, the Uzawa iteration algorithm is applied to the Stokes problem with nonlinear slip boundary conditions whose variational formulation is the variational inequality of the second kind. Firstly, the multip...In this paper, the Uzawa iteration algorithm is applied to the Stokes problem with nonlinear slip boundary conditions whose variational formulation is the variational inequality of the second kind. Firstly, the multiplier in a convex set is introduced such that the variational inequality is equivalent to the variational identity. Moreover, the solution of the variational identity satisfies the saddle-point problem of the Lagrangian functional ζ. Subsequently, the Uzawa algorithm is proposed to solve the solution of the saddle-point problem. We show the convergence of the algorithm and obtain the convergence rate. Finally, we give the numerical results to verify the feasibility of the Uzawa algorithm.展开更多
The stationary and nonstationary rotating Navier-Stokes equations with mixed boundary conditions are investigated in this paper. The existence and uniqueness of the solutions are obtained by the Galerkin approximation...The stationary and nonstationary rotating Navier-Stokes equations with mixed boundary conditions are investigated in this paper. The existence and uniqueness of the solutions are obtained by the Galerkin approximation method. Next, θ-scheme of operator splitting algorithm is applied to rotating Navier-Stokes equations and two subproblems are derived. Finally, the computational algorithms for these subproblems are provided.展开更多
基金Supported by the National Natural Science Foundation of China(11201422)the Natural Science Foundation of Zhejiang Province(Y6110639,LQ12A01017)
文摘For the large sparse saddle point problems, Pan and Li recently proposed in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] a corrected Uzawa algorithm based on a nonlinear Uzawa algorithm with two nonlinear approximate inverses, and gave the detailed convergence analysis. In this paper, we focus on the convergence analysis of this corrected Uzawa algorithm, some inaccuracies in [H. K. Pan, W. Li, Math. Numer. Sinica, 2009, 31(3): 231-242] are pointed out, and a corrected convergence theorem is presented. A special case of this modified Uzawa algorithm is also discussed.
基金supported by the National Natural Science Foundation (10871179) of China
文摘In this paper,the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed.An analysis of their convergence is presented and the upper bounds of the convergence rates are derived.Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm,the convergence rate is uniformly bounded away from 1 if τh^-2 is kept bounded,where τ is the time step size and h the space mesh size.
文摘This paper deals with the spectral approximation of an incompressible viscous/inviscid coupled model. An efficient Uzawa algorithm based on a new variational formulation is proposed. The generalization to the coupling between the Navier Stokes equations and the Euler equations is discussed.
基金Supported by the National Natural Science Foundation of China(No.10571142,No.10701061,No.10901122, No.10971165 and No.11001205)
文摘In this paper, the Uzawa iteration algorithm is applied to the Stokes problem with nonlinear slip boundary conditions whose variational formulation is the variational inequality of the second kind. Firstly, the multiplier in a convex set is introduced such that the variational inequality is equivalent to the variational identity. Moreover, the solution of the variational identity satisfies the saddle-point problem of the Lagrangian functional ζ. Subsequently, the Uzawa algorithm is proposed to solve the solution of the saddle-point problem. We show the convergence of the algorithm and obtain the convergence rate. Finally, we give the numerical results to verify the feasibility of the Uzawa algorithm.
基金the National Nature Science Foundation of China (Grants No.50306019,No.10571142,No.10471110 and No.10471109)
文摘The stationary and nonstationary rotating Navier-Stokes equations with mixed boundary conditions are investigated in this paper. The existence and uniqueness of the solutions are obtained by the Galerkin approximation method. Next, θ-scheme of operator splitting algorithm is applied to rotating Navier-Stokes equations and two subproblems are derived. Finally, the computational algorithms for these subproblems are provided.