The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e...The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.展开更多
Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosyste...Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.展开更多
Long-term excessive nitrogen(N)application neither increases nor enhances grain yield and N use efficiency(NUE)of maize,yet the mechanisms involving root morphological and physiological characteristics remain unclear....Long-term excessive nitrogen(N)application neither increases nor enhances grain yield and N use efficiency(NUE)of maize,yet the mechanisms involving root morphological and physiological characteristics remain unclear.This study aimed to elucidate the mechanisms underlying stagnant grain yield under excessive N application by examining root morphological and physiological characteristics.A 10-year N fertilizer trial was conducted in Jilin Province,Northeast China,cultivating maize at three N fertilizer levels(zero N,N0;recommended N,N2;and high N level,N4)from 2019 to 2021.Two widely cultivated maize genotypes,‘Xianyu 335’(XY335)and‘Zhengdan 958’(ZD958),were evaluated.Grain yield,N content,root morphology,and physiological characteristics were analyzed to assess the relationships between N uptake,N utilization,plant growth,and root systems under different N treatments.Compared to N0,root biomass,post-silking N uptake,and grain yield improved significantly with increased N input,while no significant differences emerged between recommended N and high N.High N application enhanced root length and root surface area but decreased root activity(measured by TTC(2,3,5-triphenyltetrazolium chloride)method),nitrate reductase activity,and root activity absorbing area across genotypes.Root length and root to shoot ratio negatively affected N uptake(by-1.2 and-24.6%),while root surface area,root activity,nitrate reductase activity,and root activity absorbing area contributed positively.The interaction between cultivar and N application significantly influenced NUE.XY335 achieved the highest NUE(11.6%)and N recovery efficiency(18.4%)through superior root surface area(23.6%),root activity(12.5%),nitrate reductase activity(8.3%),and root activity absorbing area(6.9%)compared to other treatments.Recommended N application enhanced Post N uptake,NUE,and grain yield through improved root characteristics,while high N application failed to increase or decreased NUE by reducing these parameters.This study demonstrates that root surface area,root activity,nitrate reductase activity,and root activity absorbing area limit NUE increase under high N application.展开更多
In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resource...In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resources over the long term, it is crucial to understand the effects of salinity on crops and develop optimal water-salinity irrigation strategies for processing tomatoes. A two-year field experiment was conducted in 2018 and 2019 to explore the impact of water salinity levels(S1: 1 g L^(–1), S2: 3 g L^(–1), and S3: 5 g L^(–1)) and irrigation amounts(W1: 305 mm, W2: 485 mm, and W3: 611 mm) on the soil volumetric water content and soil salinity, as well as processing tomato growth, yield, and water use efficiency. The results showed that irrigation with low to moderately saline water(<3 g L^(–1)) enhanced plant wateruptake and utilization capacity, with the soil water content(SWC) reduced by 6.5–7.62% and 10.52–13.23% for the S1 and S2 levels, respectively, compared to the S3 level in 2018. Under S1 condition, the soil salt content(SSC) accumulation rate gradually declined with an increase in the irrigation amount. For example, W3 decreased by 85.00 and 77.94% compared with W1 and W2 in 2018, and by 82.60 and 73.68% in 2019, respectively. Leaching effects were observed at the W3 level under S1, which gradually diminished with increasing water salinity and duration. In 2019, the salt contents of soil under each of the treatments increased by 10.81–89.72% compared with the contents in 2018. The yield of processing tomatoes increased with an increasing irrigation amount and peaked in the S1W3 treatment for the two years, reaching 125,304.85 kg ha^(–1)in 2018 and 128,329.71 kg ha^(–1)in 2019. Notably, in the first year, the S2W3 treatment achieved relatively high yields, exhibiting only a 2.85% reduction compared to the S1W3 treatment. However, the yield of the S2W3 treatment declined significantly in two years, and it was 15.88% less than that of the S1W3 treatment. Structural equation modeling(SEM) revealed that soil environmental factors(SWC and SSC) directly influence yield while also exerting indirect impacts on the growth indicators of processing tomatoes(plant height, stem diameter, and leaf area index). The TOPSIS method identified S1W3, S1W2, and S2W2 as the top three treatments. The single-factor marginal effect function also revealed that irrigation water salinity contributed to the composite evaluation scores(CES) when it was below 0.96 g L^(–1). Using brackish water with a salinity of 3 g L^(–1)at an irrigation amount of 485 mm over one year ensured that processing tomatoes maintained high yields with a relatively high CES(0.709). However, using brackish water for more than one year proved unfeasible.展开更多
The well-facilitated farmland projects(WFFPs)involve the typical sustainable intensification of farmland use and play a key role in raising food production in China.However,whether such WFFPs can enhance the nitrogen(...The well-facilitated farmland projects(WFFPs)involve the typical sustainable intensification of farmland use and play a key role in raising food production in China.However,whether such WFFPs can enhance the nitrogen(N)use efficiency and reduce environmental impacts is still unclear.Here,we examined the data from 502 valid questionnaires collected from WFFPs in the major grain-producing area,the Huang-Huai-Hai Region(HHHR)in China,with 429 samples for wheat,328 for maize,and 122 for rice.We identified gaps in N use efficiency(NUE)and N losses from the production of the three crops between the sampled WFFPs and counties based on the statistical data.The results showed that compared to the county-level(wheat,39.1%;maize,33.8%;rice,35.1%),the NUEs for wheat(55.2%),maize(52.1%),and rice(50.2%)in the WFFPs were significantly improved(P<0.05).In addition,the intensities of ammonia(NH3)volatilization(9.9-12.2 kg N ha–1),N leaching(6.5-16.9 kg N ha–1),and nitrous oxide(N2O)emissions(1.2-1.6 kg N ha–1)from crop production in the sampled WFFPs were significantly lower than the county averages(P<0.05).Simulations showed that if the N rates are reduced by 10.0,15.0,and 20.0%for the counties,the NUEs of wheat,maize,and rice in the HHHR will increase by 2.9-6.3,2.4-5.2,and 2.6-5.7%,respectively.If the N rate is reduced to the WFFP level in each county,the NUEs of the three crops will increase by 12.9-19.5%,and the N leaching,NH3,and N2O emissions will be reduced by 48.9-56.2,37.4-42.9,and 46.0-66.5%,respectively.Our findings highlight that efficient N management practices in sustainable intensive farmland have considerable potential for reducing environmental impacts.展开更多
Elucidating crops'physiological and molecular mechanisms to adapt to low nitrogen environment and promoting nitrogen transfer from senescent leaves to new leaves is crucial in improving Brassica's nitrogen use...Elucidating crops'physiological and molecular mechanisms to adapt to low nitrogen environment and promoting nitrogen transfer from senescent leaves to new leaves is crucial in improving Brassica's nitrogen use efficiency(NUE).Glutamine synthetase gene(GS)plays a vital role in helping plants reassimilate ammonium released from protein degradation in leaves,and it was the focus of our research on this topic.In this study,we identified high(H141)and low(L65)NUE genotypes of Brassica juncea with different responses to low-nitrogen stress.We found that H141 has a lower nitrate content but higher ammonium and free amino acid contents as well as higher nitrate reductase and GS activities in the shoots.These physiological indicators are responsible for the high NUE of H141.Wholegenome resequencing data revealed that 5,880 genes associated with NUE are polymorphic between H141 and L65.These genes participate in various amino acid,carbohydrate,and energy metabolic pathways.Haplotype analysis revealed two haplotypes for BjuB05.GS1.4,Hap1 and Hap2,which have multiple single nucleotide polymorphisms or insertions/deletions in the regulatory regions of the 5′and 3′untranslated regions and introns.Furthermore,the shoot NUE of Hap1 is significantly lower than that of Hap2.These two haplotypes of BjuB05.GS1.4 lead to differences in the shoot NUEs of different genetic populations of mustard and are associated with the local soil nitrogen content,suggesting that they might help mustard to adapt to different geographic localities.In conclusion,the results of our study shed light on the physiological and molecular mechanisms underlying different mustard NUE genotypes and demonstrate the enormous potential of NUE breeding in B.juncea.展开更多
The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop pro...The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?In this study,the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two highyielding maize cultivars(XY335 and DH618)and the regulatory effects of canopy physiological characteristics on radiation use efficiency(RUE)and yield were studied based on high-yield field experiments in Qitai,Xinjiang Uygur Autonomous Region,China,during 2019 and 2020.The results showed that the distribution of photosynthetically active photon flux density(PPFD)in the maize canopy decreased from top to bottom,while the vertical distribution of specific leaf nitrogen(SLN)initially increased and then decreased from top to bottom in the canopy.When SLN began to decrease,the PPDF values of XY335 and DH618 were 0.5 and 0.3,respectively,corresponding to 40.6 and49.3%of the total leaf area index(LAI).Nitrogen extinction coefficient(K_(N))/light extinction coefficient(K_(L))ratio in the middle and lower canopy of XY335(0.32)was 0.08 higher than that of DH618(0.24).The yield and RUE of XY335(17.2 t ha^(-1)and 1.8g MJ^(-1))were 7.0%(1.1 t ha^(-1))and 13.7%(0.2 g MJ^(-1))higher than those of DH618(16.1 t ha^(-1)and 1.6 g MJ^(-1)).Therefore,better light conditions(where the proportion of LAI in the upper and middle canopy was small)improved the light distribution when SLN started to decline,thus helping to mobilize the nitrogen distribution and maintain a high K_(N)and K_(N)/K_(L)ratio.In addition,K_(N)/K_(L)was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha^(-1).At this level,an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future.展开更多
Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate c...Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate change.However,there is currently a lack of consensus regarding the leaf-scale iWUE variation characteristics among different functional types.In this study,we measured theδ^(13)Cleaf and iWUE values of different functional plants(i.e.,life forms,leaf types,and mycorrhizal types)from 120 species across distinct habitat types(i.e.,hillside,nearpeak,and peak)in a subtropical forest on the western slope of Wuyi Mountains,southern China.The results showed that theδ^(13)Cleaf values of plants on the western slope of Wuyi Mountains ranged from-34.63‰to-30.04‰,and iWUE ranged from 5.93μmol mol^(-1)to 57.34μmol mol^(-1).Theδ^(13)Cleaf and iWUE values differed significantly among plant life forms,following the order of herbs>vine plants>shrubs>trees.Theδ^(13)Cleaf and iWUE values of ectomycorrhizal(ECM)species were greater than those of arbuscular mycorrhizal(AM)species despite there being no significant difference between plants with different leaf types(Simple leaves(SL)vs.Compound leaves(CL)).From the hillside to the peak,both at the community level and at the species level,theδ^(13)C values of leaves and iWUE values of plants exhibited an upward trend.The regression analysis revealed that leaf-scale iWUE was significantly negatively correlated with soil water content and significantly positively correlated with leaf phosphorus content.The findings indicated that leaf carbon isotope fractionation and corresponding iWUE can be influenced by life form,mycorrhizal type,and soil water availability.These insights provide a deeper understanding of the coupling mechanisms of carbon,water,and nutrients among different functional plant types in subtropical forests,and offer insights into predicting plant adaptability under climate change.展开更多
With the aim of maximizing nitrogen use efficiency(NUE)of wheat in the North China Plain by optimizing irrigation and nitrogen application,a field experiment with a split-plot design was conducted.The main plots were ...With the aim of maximizing nitrogen use efficiency(NUE)of wheat in the North China Plain by optimizing irrigation and nitrogen application,a field experiment with a split-plot design was conducted.The main plots were subjected to three irrigation levels:bringing soil water content in the 0–40 cm profile to 65%(I1),75%(I2)and 85%(I3)of field water capacity.The subplots were subjected to three nitrogen application rates:150(N150),210(N210)and 270(N270)kg N ha−1.Compared with the N270,N210 treatment enhanced grain yield,NUE,and net income by 4.5%,6.2%,and 5.8%,respectively(two-year averages).Additionally,it reduced soil nitrate reductase activity,the abundance of denitrification-related bacteria,and loss rate of fertilizer nitrogen by 12.9%,53.3%,and 16.3%,respectively.Compared with the N150,N210 treatment increased grain yield,grain nitrogen accumulation,and net income by 15.9%,14.2%,and 26.3%.Relative to I1 and I3,I2 treatment increased root length density in the 20–60 cm soil layer,uptake rate of fertilizer nitrogen,grain yield,and net income.Overall,the combination of irrigation to 75%of field capacity with nitrogen application at 210 kg N ha^(−1)increased wheat’s capacity for nitrogen uptake and remobilization and thereby grain nitrogen accumulation,and increased NUE by reducing nitrogen loss rate.展开更多
Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes...Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes and leaf-related biophysical para-meter leaf area index(LAI),which are not completely synchronized in seasonality with GPP.In this study,we proposed chlorophyll content-based light use efficiency model(CC-LUE)to improve GPP estimates,as chlorophyll is the direct site of photosynthesis,and only the light absorbed by chlorophyll is used in the photosynthetic process.The CC-LUE model is constructed by establishing a linear correlation between satellite-derived canopy chlorophyll content(Chlcanopy)and FPAR.This method was calibrated and validated utiliz-ing 7-d averaged in-situ GPP data from 14 eddy covariance flux towers covering deciduous broadleaf forest ecosystems across five dif-ferent climate zones.Results showed a relatively robust seasonal consistency between Chlcanopy with GPP in deciduous broadleaf forests under different climatic conditions.The CC-LUE model explained 88% of the in-situ GPP seasonality for all validation site-year and 56.0% of in-situ GPP variations through the growing season,outperforming the three widely used LUE models(MODIS-GPP algorithm,Vegetation Photosynthesis Model(VPM),and the eddy covariance-light use efficiency model(EC-LUE)).Additionally,the CC-LUE model(RMSE=0.50 g C/(m^(2)·d))significantly improved the underestimation of GPP during the growing season in semi-arid region,re-markably decreasing the root mean square error of averaged growing season GPP simulation and in-situ GPP by 75.4%,73.4%,and 37.5%,compared with MOD17(RMSE=2.03 g C/(m^(2)·d)),VPM(RMSE=1.88 g C/(m^(2)·d)),and EC-LUE(RMSE=0.80 g C/(m^(2)·d))model.The chlorophyll-based method proved superior in capturing the seasonal variations of GPP in forest ecosystems,thereby provid-ing the possibility of a more precise depiction of forest seasonal carbon uptake.展开更多
Whole_growing season pot experiments were conducted to examine the response of growth and water use efficiency ( WUE ) of spring wheat ( Triticum aestivum L. cv. Gaoyuan 602) to CO 2 enrichment. Wheat plants wer...Whole_growing season pot experiments were conducted to examine the response of growth and water use efficiency ( WUE ) of spring wheat ( Triticum aestivum L. cv. Gaoyuan 602) to CO 2 enrichment. Wheat plants were grown in open_top chambers (OTCs) subject to two concentrations of CO 2 ()(350 and 700 μL/L, hereafter 'ambient' and 'elevated' respectively) and three soil water levels (80%, 60% and 40% field water capacity ( FWC ), hereafter 'high soil moisture', 'medium soil moisture' and 'low soil moisture' respectively). Elevated CO 2 greatly increased leaf net photosynthesis ( Pn ) at all three soil water levels. The Pn of plants growing under elevated was 22% lower than that of plants growing at ambient when measured with the same (700 μL/L). Plant growth was enhanced by elevated throughout the growing season, with an increase of 14.8% in shoot dry weight at harvest under high soil moisture, and leaf area was increased by about 20% at all three soil water levels. Elevated in combination with high soil moisture increased the ratio of plant shoot dry weight to height by 15.7%, while this ratio was decreased by over 50% when plants were subject to drought. Elevated also increased the water use efficiency of wheat, mainly due to decreases in transpiration and cumulative consumption of water, and an increase in shoot dry weight, with the biggest value of 30% occurring at high soil water moisture level. Compared to high soil moisture, drought decreased shoot dry weight by 72% under ambient , and by 76% under elevated . Similarly, drought also reduced WUE by 19% under ambient , and 23% under elevated . Our results indicate that: (1) elevated can increase the photosynthetic rates, growth and WUE of wheat plants; (2) long_term exposure to high may result in lower photosynthetic capacity; (3) high stimulates plants lateral growth more than vertical growth; (4) the effects of CO 2 enrichment on plants depend on soil water status, with plants benefiting more from CO 2 enrichment if sufficient water is supplied; and (5) drought may cause relatively more reduction in plant growth and WUE under future elevated conditions.展开更多
[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei ho...[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.展开更多
Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hyg...Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.展开更多
Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in ...Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in the Maowusu Sand Area were analyzed and the relation among these characteristics and the resource utilization efficiency, taxonomic categories and growth forms of the species were assessed. The results showed that species from Chenopodiaceae, Gramineae, Leguminosae which possessed the C 4 photosynthesis pathway, or C 3 pathway and also with nitrogen_fixation capacities had higher or the highest P n values, i.e., 20~30 μmol CO 2·m -2 ·s -1 , while that of evergreen shrub of Pinaceae had the lowest P n values, i.e., 0~5 μmol CO 2·m -2 ·s -1 . Those species from Compositae, Scrophulariaceae, and Gramineae with C 3 pathway but no N_fixation capacity had the highest E rates, i.e., 20~30 mmol H 2O·m -2 ·s -1 and again the evergreen shrub together with some species from Salicaceae and Compositae had the lowest E rates, i.e., 0~5 mmol H 2O·m -2 ·s -1 . Species from Leguminosae, Gramineae and Chenopodiaceae with C 4 pathway or C 3 pathway with N_fixation capacity, both shrubs and grasses, generally had higher WUE . However, even the physiological traits of the same species were habitat_ and season_specific. The values of both P n and E in late summer were much higher than those in early summer, with average increases of 26%, 40% respectively in the four habitats. WUE in late summer was, however, 12% lower. Generally, when the environments became drier as a result of habitats changed, i.e., in the order of wetland, lowland, fixed sand dune and shifting sand dune, P n and E decreased but WUE increased.展开更多
[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyl...[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.展开更多
[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material...[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material, the effects of deep tillage, traditional tillage and no tillage and rotary tillage on dry matter accumulation, soil water content, water use efficiency and yield of broomcom millet were investi- gated. [Result] Dry matter accumulation rate and accumulated amount were signifi- cantly higher in the deep tillage, no tillage and rotary tillage treatments than in the conventional tillage treatment, and the highest in the deep tillage treatment. The soil water content of the deep tillage treatment at 0-100 cm was higher than those of other tillage techniques, deep tillage also exhibited the highest soil water storage, and water use efficiency values were in order of deep tillage〉rotary tillage〉no tillage〉conventional tillage. The deep tillage treatment also showed the highest grain weight per spike, 1 000-grain weight and yield, while conventional tillage exhibited the lowest values, indicating that deep tillage is most beneficial to improvement of yield and water use efficiency of broomcom millet. [Conclusion] This study provides a scientific basis for water use efficiency of broomcorh millet in its main producing areas.展开更多
[Objective]The aim was to study heterosis of N use efficiency for grain production (NUEg) of Brassica napus L. and provide theoretical basis for breeding N-efficient cultivars. [Method]Dry matter production and N co...[Objective]The aim was to study heterosis of N use efficiency for grain production (NUEg) of Brassica napus L. and provide theoretical basis for breeding N-efficient cultivars. [Method]Dry matter production and N content of six B.napus parents (Zheshuang 3,Yangyou 7,ZJ1,Shilijia,Ningyou 14 and Huyou 16) and their F1 combinations from 6 × 6 complete diallel cross in maturity stage under two N levels were measured; heterosis of NUEg,combining ability and heritability size were analyzed and calculated. [Result]The results showed that NUEg has obvious heterosis; combining ability variance analysis indicated that NUEg was mainly controlled by additive,dominant and cytoplasmic effects; genetic variance analysis showed that additive effects and dominance effects were all significant in low nitrogen fertilizer and dominance effects were significant in high nitrogen fertilizer. [Conclusion]NUEg of B.napus has obvious heterosis.展开更多
The field experiments were conducted in Anhui during 2016 to investigate the effects of controlled-release nitrogen (CRN) rates and mixture of controlled-re- lease nitrogen and conventional nitrogen (CN) on the yi...The field experiments were conducted in Anhui during 2016 to investigate the effects of controlled-release nitrogen (CRN) rates and mixture of controlled-re- lease nitrogen and conventional nitrogen (CN) on the yield and nitrogen efficiency of summer maize. Six treatments included CK (with no application of N), CNIO0% splits (CN), CRFIO0% (CRN1), CRN60%+CN40% (CRN2), CRN85% (CRN3) and CRN70% (CRN4). The results showed proper CRN increased yields and output val- ue. Compared with CN, CRN2 significantly increased by 13.74%, CRN1 increased by 4.84%, and CRN3 was equal to CN. CRN increased yield by grain number per spike of yield components. CRN2 had the highest apparent nitrogen fertilizer recov- ery efficiency and CRN1 was the second, which were significantly higher than CN. Nitrogen agronomic efficiency of CRN2 was significantly higher than CN. Nitrogen physiological efficiency of CRN2 was higher than CN. The partial productivity of CRN1 was higher than that with CN. And the effect of nitrogen fertilizer of CRN2 was the highest, which was increased 758 yuan/hm2. Considering yield, nitrogen use efficiency and economic benefit, applying the mixture of CRN and CN was the most beneficial treatment. CRN1 was the second treatment, and CRN3 didn't reduce yield.展开更多
The effects of potassium (K) application rates on the yield, fiber quality and K fertilizer use efficiency of three hybrid cotton varieties (Jin102, Xiangzamian8, Siyang328) were studied in field experiment. Ferti...The effects of potassium (K) application rates on the yield, fiber quality and K fertilizer use efficiency of three hybrid cotton varieties (Jin102, Xiangzamian8, Siyang328) were studied in field experiment. Fertilizer rates of K2O 135 and 270 kg/hm2, representing 1x and 2x recommended K rates, were applied, no application of k fertilizer as the CK. The results show that the lint yield increased 39.13%-57.48%with potassium application, highly significantly. Al yield components of the three hy-brid cotton varieties increased with the increase of K application amounts. The bol number per plant, single bol weight and lint percentage were increased by 14.24%-40.29%, 3.59%-15.51% and 0.16%-4.89%, respectively, and the fiber length and specific strength also increased with the increasing K application amounts, showing no significant influence on Micronaire. When the K application amounts increased from 135 to 270 kg/hm2, the partial factor productivity (PFPk) reduced by 45.93%-48.01%, and the agronomic efficiency (AEk) reduced by 37.1%-42.9%. The PFPk and KE (K efficiency coefficients) of S328 were the highest among the three varieties, which also showed the strongest resistance to low potassium stress, and with no potassi-um fertilizer application (K0), the lint yield of S328 was 5.54% and 11.19% higher than that of X8 and J102. The AEk of J102 was the highest, and its reward of K fertilizer was the greatest among the three varieties.展开更多
[Objective] This study and nitrogen use efficiency in aimed to investigate the nitrogen dynamic changes maize under different nitrogen application patterns. [Method] Maize cultivar Xianyu 335 was selected as the expe...[Objective] This study and nitrogen use efficiency in aimed to investigate the nitrogen dynamic changes maize under different nitrogen application patterns. [Method] Maize cultivar Xianyu 335 was selected as the experimental material and was planted at two densities 85 000 and 95 000 plants/hm2. The total amount of fertilizers applied kept constant. The nitrogen content in leaves, stems, sheathes, husks, grains, cobs, tassels and filaments of maize plants in jointing stage, silking stage, 15, 30, 45 and 60 d after silking stage was measured. [Result] Total nitrogen content in maize plant reached the peak around 45 d after silking stage and a higher population was helpful to nitrogen accumulation. Total nitrogen content of maize plant was positively correlated with yield and it got closer in higher popula- tion. Grain nitrogen content and nitrogen harvest index were significantly positively correlated with yield in higher population. High ratio of nitrogen fertilizer in silking stage was beneficial to nitrogen accumulation in leaf and ear, as well as nitrogen translocation in stem and sheath, but high ratio of nitrogen fertilizer in earlier stage delayed nitrogen metabolism. Nitrogen uptake peak was from silking stage to 15 d after silking stage, and nitrogen uptake rate increased high ratio of nitrogen fertilizer was applied in later growth stages and moved forward in higher plant population. [Conclusion] It was advantaged for nitrogen fertilizer efficiency on condition that ni- trogen application was moved backward. Accumulating too much nitrogen in earlier stages inhibited nitrogen uptake in later periods展开更多
基金supported by the Natural Science Fund of China(31771724)the Key Research and Development Project of Shaanxi Province(2024NC-ZDCYL-01-10).
文摘The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.
基金National Nonprofit Institute Research Grant of CAF,No.CAFYBB2018ZA004,No.CAFYBB2023ZA009Fengyun Application Pioneering Project,No.FY-APP-ZX-2023.02。
文摘Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.
基金supported by the National Key Research and Development Program of China(2023YFD2301702)the earmarked Fund for China Agriculture Research System(CARS-02)the National Natural Science Foundation of China(31971852).
文摘Long-term excessive nitrogen(N)application neither increases nor enhances grain yield and N use efficiency(NUE)of maize,yet the mechanisms involving root morphological and physiological characteristics remain unclear.This study aimed to elucidate the mechanisms underlying stagnant grain yield under excessive N application by examining root morphological and physiological characteristics.A 10-year N fertilizer trial was conducted in Jilin Province,Northeast China,cultivating maize at three N fertilizer levels(zero N,N0;recommended N,N2;and high N level,N4)from 2019 to 2021.Two widely cultivated maize genotypes,‘Xianyu 335’(XY335)and‘Zhengdan 958’(ZD958),were evaluated.Grain yield,N content,root morphology,and physiological characteristics were analyzed to assess the relationships between N uptake,N utilization,plant growth,and root systems under different N treatments.Compared to N0,root biomass,post-silking N uptake,and grain yield improved significantly with increased N input,while no significant differences emerged between recommended N and high N.High N application enhanced root length and root surface area but decreased root activity(measured by TTC(2,3,5-triphenyltetrazolium chloride)method),nitrate reductase activity,and root activity absorbing area across genotypes.Root length and root to shoot ratio negatively affected N uptake(by-1.2 and-24.6%),while root surface area,root activity,nitrate reductase activity,and root activity absorbing area contributed positively.The interaction between cultivar and N application significantly influenced NUE.XY335 achieved the highest NUE(11.6%)and N recovery efficiency(18.4%)through superior root surface area(23.6%),root activity(12.5%),nitrate reductase activity(8.3%),and root activity absorbing area(6.9%)compared to other treatments.Recommended N application enhanced Post N uptake,NUE,and grain yield through improved root characteristics,while high N application failed to increase or decreased NUE by reducing these parameters.This study demonstrates that root surface area,root activity,nitrate reductase activity,and root activity absorbing area limit NUE increase under high N application.
基金funded by the National Key R&D Program of China (2022YFD1900405)。
文摘In recent years, the rational utilization of saline water resources for agricultural irrigation has emerged as an effective strategy to alleviate water scarcity. To safely and efficiently exploit saline water resources over the long term, it is crucial to understand the effects of salinity on crops and develop optimal water-salinity irrigation strategies for processing tomatoes. A two-year field experiment was conducted in 2018 and 2019 to explore the impact of water salinity levels(S1: 1 g L^(–1), S2: 3 g L^(–1), and S3: 5 g L^(–1)) and irrigation amounts(W1: 305 mm, W2: 485 mm, and W3: 611 mm) on the soil volumetric water content and soil salinity, as well as processing tomato growth, yield, and water use efficiency. The results showed that irrigation with low to moderately saline water(<3 g L^(–1)) enhanced plant wateruptake and utilization capacity, with the soil water content(SWC) reduced by 6.5–7.62% and 10.52–13.23% for the S1 and S2 levels, respectively, compared to the S3 level in 2018. Under S1 condition, the soil salt content(SSC) accumulation rate gradually declined with an increase in the irrigation amount. For example, W3 decreased by 85.00 and 77.94% compared with W1 and W2 in 2018, and by 82.60 and 73.68% in 2019, respectively. Leaching effects were observed at the W3 level under S1, which gradually diminished with increasing water salinity and duration. In 2019, the salt contents of soil under each of the treatments increased by 10.81–89.72% compared with the contents in 2018. The yield of processing tomatoes increased with an increasing irrigation amount and peaked in the S1W3 treatment for the two years, reaching 125,304.85 kg ha^(–1)in 2018 and 128,329.71 kg ha^(–1)in 2019. Notably, in the first year, the S2W3 treatment achieved relatively high yields, exhibiting only a 2.85% reduction compared to the S1W3 treatment. However, the yield of the S2W3 treatment declined significantly in two years, and it was 15.88% less than that of the S1W3 treatment. Structural equation modeling(SEM) revealed that soil environmental factors(SWC and SSC) directly influence yield while also exerting indirect impacts on the growth indicators of processing tomatoes(plant height, stem diameter, and leaf area index). The TOPSIS method identified S1W3, S1W2, and S2W2 as the top three treatments. The single-factor marginal effect function also revealed that irrigation water salinity contributed to the composite evaluation scores(CES) when it was below 0.96 g L^(–1). Using brackish water with a salinity of 3 g L^(–1)at an irrigation amount of 485 mm over one year ensured that processing tomatoes maintained high yields with a relatively high CES(0.709). However, using brackish water for more than one year proved unfeasible.
基金supported by the National Key Research and Development Program of China(2022YFB3903505)the National Natural Science Foundation of China(72221002)。
文摘The well-facilitated farmland projects(WFFPs)involve the typical sustainable intensification of farmland use and play a key role in raising food production in China.However,whether such WFFPs can enhance the nitrogen(N)use efficiency and reduce environmental impacts is still unclear.Here,we examined the data from 502 valid questionnaires collected from WFFPs in the major grain-producing area,the Huang-Huai-Hai Region(HHHR)in China,with 429 samples for wheat,328 for maize,and 122 for rice.We identified gaps in N use efficiency(NUE)and N losses from the production of the three crops between the sampled WFFPs and counties based on the statistical data.The results showed that compared to the county-level(wheat,39.1%;maize,33.8%;rice,35.1%),the NUEs for wheat(55.2%),maize(52.1%),and rice(50.2%)in the WFFPs were significantly improved(P<0.05).In addition,the intensities of ammonia(NH3)volatilization(9.9-12.2 kg N ha–1),N leaching(6.5-16.9 kg N ha–1),and nitrous oxide(N2O)emissions(1.2-1.6 kg N ha–1)from crop production in the sampled WFFPs were significantly lower than the county averages(P<0.05).Simulations showed that if the N rates are reduced by 10.0,15.0,and 20.0%for the counties,the NUEs of wheat,maize,and rice in the HHHR will increase by 2.9-6.3,2.4-5.2,and 2.6-5.7%,respectively.If the N rate is reduced to the WFFP level in each county,the NUEs of the three crops will increase by 12.9-19.5%,and the N leaching,NH3,and N2O emissions will be reduced by 48.9-56.2,37.4-42.9,and 46.0-66.5%,respectively.Our findings highlight that efficient N management practices in sustainable intensive farmland have considerable potential for reducing environmental impacts.
基金supported by the National Natural Science Foundation of China(U21A20236,32072664)the Natural Science Foundation of Hunan Province,China(2022RC3053,2021JC0001,2021RC3086,2022NK2009)+1 种基金the China Agriculture Research System(CARS-01-30)the Innovation Foundation for Graduate of Hunan Agricultural University,China(2023XC116)。
文摘Elucidating crops'physiological and molecular mechanisms to adapt to low nitrogen environment and promoting nitrogen transfer from senescent leaves to new leaves is crucial in improving Brassica's nitrogen use efficiency(NUE).Glutamine synthetase gene(GS)plays a vital role in helping plants reassimilate ammonium released from protein degradation in leaves,and it was the focus of our research on this topic.In this study,we identified high(H141)and low(L65)NUE genotypes of Brassica juncea with different responses to low-nitrogen stress.We found that H141 has a lower nitrate content but higher ammonium and free amino acid contents as well as higher nitrate reductase and GS activities in the shoots.These physiological indicators are responsible for the high NUE of H141.Wholegenome resequencing data revealed that 5,880 genes associated with NUE are polymorphic between H141 and L65.These genes participate in various amino acid,carbohydrate,and energy metabolic pathways.Haplotype analysis revealed two haplotypes for BjuB05.GS1.4,Hap1 and Hap2,which have multiple single nucleotide polymorphisms or insertions/deletions in the regulatory regions of the 5′and 3′untranslated regions and introns.Furthermore,the shoot NUE of Hap1 is significantly lower than that of Hap2.These two haplotypes of BjuB05.GS1.4 lead to differences in the shoot NUEs of different genetic populations of mustard and are associated with the local soil nitrogen content,suggesting that they might help mustard to adapt to different geographic localities.In conclusion,the results of our study shed light on the physiological and molecular mechanisms underlying different mustard NUE genotypes and demonstrate the enormous potential of NUE breeding in B.juncea.
基金supported by the National Natural Science Foundation of China(32172118)the National Key Research and Development Program of China(2016YFD0300110 and 2016YFD0300101)+1 种基金the Basic Scientific Research Fund of Chinese Academy of Agricultural Sciences,China(S2022ZD05)the Agricultural Science and Technology Innovation Program,China(CAAS-ZDRW202004)。
文摘The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?In this study,the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two highyielding maize cultivars(XY335 and DH618)and the regulatory effects of canopy physiological characteristics on radiation use efficiency(RUE)and yield were studied based on high-yield field experiments in Qitai,Xinjiang Uygur Autonomous Region,China,during 2019 and 2020.The results showed that the distribution of photosynthetically active photon flux density(PPFD)in the maize canopy decreased from top to bottom,while the vertical distribution of specific leaf nitrogen(SLN)initially increased and then decreased from top to bottom in the canopy.When SLN began to decrease,the PPDF values of XY335 and DH618 were 0.5 and 0.3,respectively,corresponding to 40.6 and49.3%of the total leaf area index(LAI).Nitrogen extinction coefficient(K_(N))/light extinction coefficient(K_(L))ratio in the middle and lower canopy of XY335(0.32)was 0.08 higher than that of DH618(0.24).The yield and RUE of XY335(17.2 t ha^(-1)and 1.8g MJ^(-1))were 7.0%(1.1 t ha^(-1))and 13.7%(0.2 g MJ^(-1))higher than those of DH618(16.1 t ha^(-1)and 1.6 g MJ^(-1)).Therefore,better light conditions(where the proportion of LAI in the upper and middle canopy was small)improved the light distribution when SLN started to decline,thus helping to mobilize the nitrogen distribution and maintain a high K_(N)and K_(N)/K_(L)ratio.In addition,K_(N)/K_(L)was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha^(-1).At this level,an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future.
基金supported by the Open Research Fund of Jiangxi Provincial Academy of Water Resources Sciences(2022SKTR05&2022SKTR03)the National Natural Science Foundation of China(42067049&42367049),the Jiangxi Provincial Natural Science Foundation(20242BAB25350)+5 种基金the Research Project of the Jiangxi Provincial Department of Forestry(CXZX(2025)14 and JXTG(2023)15)the Ganpo Juncai Plan(QN2023018)the Ganpo Yingcai Plan(gpyc20240038)the Double Thousand Plan of Jiangxi Province(jxsq2023102213 and jxsq2023102214)the Jiangxi Province“Science and Technology+Water Resources”Joint Plan Project(2023KSG01001)the Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(20243BCE51025).
文摘Stable carbon isotopes(δ^(13)C)are extensively utilized to study intrinsic water use efficiency(iWUE)at the leaf-scale in terrestrial ecosystems,serving as a crucial metric for assessing plant adaptation to climate change.However,there is currently a lack of consensus regarding the leaf-scale iWUE variation characteristics among different functional types.In this study,we measured theδ^(13)Cleaf and iWUE values of different functional plants(i.e.,life forms,leaf types,and mycorrhizal types)from 120 species across distinct habitat types(i.e.,hillside,nearpeak,and peak)in a subtropical forest on the western slope of Wuyi Mountains,southern China.The results showed that theδ^(13)Cleaf values of plants on the western slope of Wuyi Mountains ranged from-34.63‰to-30.04‰,and iWUE ranged from 5.93μmol mol^(-1)to 57.34μmol mol^(-1).Theδ^(13)Cleaf and iWUE values differed significantly among plant life forms,following the order of herbs>vine plants>shrubs>trees.Theδ^(13)Cleaf and iWUE values of ectomycorrhizal(ECM)species were greater than those of arbuscular mycorrhizal(AM)species despite there being no significant difference between plants with different leaf types(Simple leaves(SL)vs.Compound leaves(CL)).From the hillside to the peak,both at the community level and at the species level,theδ^(13)C values of leaves and iWUE values of plants exhibited an upward trend.The regression analysis revealed that leaf-scale iWUE was significantly negatively correlated with soil water content and significantly positively correlated with leaf phosphorus content.The findings indicated that leaf carbon isotope fractionation and corresponding iWUE can be influenced by life form,mycorrhizal type,and soil water availability.These insights provide a deeper understanding of the coupling mechanisms of carbon,water,and nutrients among different functional plant types in subtropical forests,and offer insights into predicting plant adaptability under climate change.
基金supported by the National Natural Science Foundation of China(32172114)China Agriculture Research System of MOF and MARA(CARS-03)Taishan scholar Project Special Funds(202211094).
文摘With the aim of maximizing nitrogen use efficiency(NUE)of wheat in the North China Plain by optimizing irrigation and nitrogen application,a field experiment with a split-plot design was conducted.The main plots were subjected to three irrigation levels:bringing soil water content in the 0–40 cm profile to 65%(I1),75%(I2)and 85%(I3)of field water capacity.The subplots were subjected to three nitrogen application rates:150(N150),210(N210)and 270(N270)kg N ha−1.Compared with the N270,N210 treatment enhanced grain yield,NUE,and net income by 4.5%,6.2%,and 5.8%,respectively(two-year averages).Additionally,it reduced soil nitrate reductase activity,the abundance of denitrification-related bacteria,and loss rate of fertilizer nitrogen by 12.9%,53.3%,and 16.3%,respectively.Compared with the N150,N210 treatment increased grain yield,grain nitrogen accumulation,and net income by 15.9%,14.2%,and 26.3%.Relative to I1 and I3,I2 treatment increased root length density in the 20–60 cm soil layer,uptake rate of fertilizer nitrogen,grain yield,and net income.Overall,the combination of irrigation to 75%of field capacity with nitrogen application at 210 kg N ha^(−1)increased wheat’s capacity for nitrogen uptake and remobilization and thereby grain nitrogen accumulation,and increased NUE by reducing nitrogen loss rate.
基金Under the auspices of the National Key Research and Development Program of China(No.2019YFA0606603)。
文摘Gross primary production(GPP)is a crucial indicator representing the absorption of atmospheric CO_(2) by vegetation.At present,the estimation of GPP by remote sensing is mainly based on leaf-related vegetation indexes and leaf-related biophysical para-meter leaf area index(LAI),which are not completely synchronized in seasonality with GPP.In this study,we proposed chlorophyll content-based light use efficiency model(CC-LUE)to improve GPP estimates,as chlorophyll is the direct site of photosynthesis,and only the light absorbed by chlorophyll is used in the photosynthetic process.The CC-LUE model is constructed by establishing a linear correlation between satellite-derived canopy chlorophyll content(Chlcanopy)and FPAR.This method was calibrated and validated utiliz-ing 7-d averaged in-situ GPP data from 14 eddy covariance flux towers covering deciduous broadleaf forest ecosystems across five dif-ferent climate zones.Results showed a relatively robust seasonal consistency between Chlcanopy with GPP in deciduous broadleaf forests under different climatic conditions.The CC-LUE model explained 88% of the in-situ GPP seasonality for all validation site-year and 56.0% of in-situ GPP variations through the growing season,outperforming the three widely used LUE models(MODIS-GPP algorithm,Vegetation Photosynthesis Model(VPM),and the eddy covariance-light use efficiency model(EC-LUE)).Additionally,the CC-LUE model(RMSE=0.50 g C/(m^(2)·d))significantly improved the underestimation of GPP during the growing season in semi-arid region,re-markably decreasing the root mean square error of averaged growing season GPP simulation and in-situ GPP by 75.4%,73.4%,and 37.5%,compared with MOD17(RMSE=2.03 g C/(m^(2)·d)),VPM(RMSE=1.88 g C/(m^(2)·d)),and EC-LUE(RMSE=0.80 g C/(m^(2)·d))model.The chlorophyll-based method proved superior in capturing the seasonal variations of GPP in forest ecosystems,thereby provid-ing the possibility of a more precise depiction of forest seasonal carbon uptake.
文摘Whole_growing season pot experiments were conducted to examine the response of growth and water use efficiency ( WUE ) of spring wheat ( Triticum aestivum L. cv. Gaoyuan 602) to CO 2 enrichment. Wheat plants were grown in open_top chambers (OTCs) subject to two concentrations of CO 2 ()(350 and 700 μL/L, hereafter 'ambient' and 'elevated' respectively) and three soil water levels (80%, 60% and 40% field water capacity ( FWC ), hereafter 'high soil moisture', 'medium soil moisture' and 'low soil moisture' respectively). Elevated CO 2 greatly increased leaf net photosynthesis ( Pn ) at all three soil water levels. The Pn of plants growing under elevated was 22% lower than that of plants growing at ambient when measured with the same (700 μL/L). Plant growth was enhanced by elevated throughout the growing season, with an increase of 14.8% in shoot dry weight at harvest under high soil moisture, and leaf area was increased by about 20% at all three soil water levels. Elevated in combination with high soil moisture increased the ratio of plant shoot dry weight to height by 15.7%, while this ratio was decreased by over 50% when plants were subject to drought. Elevated also increased the water use efficiency of wheat, mainly due to decreases in transpiration and cumulative consumption of water, and an increase in shoot dry weight, with the biggest value of 30% occurring at high soil water moisture level. Compared to high soil moisture, drought decreased shoot dry weight by 72% under ambient , and by 76% under elevated . Similarly, drought also reduced WUE by 19% under ambient , and 23% under elevated . Our results indicate that: (1) elevated can increase the photosynthetic rates, growth and WUE of wheat plants; (2) long_term exposure to high may result in lower photosynthetic capacity; (3) high stimulates plants lateral growth more than vertical growth; (4) the effects of CO 2 enrichment on plants depend on soil water status, with plants benefiting more from CO 2 enrichment if sufficient water is supplied; and (5) drought may cause relatively more reduction in plant growth and WUE under future elevated conditions.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest from Ministry of Agriculture(200903025-05)Fund from Kunming Municipal Science and Technology Committee(08S010201)~~
文摘[Objective] The aim of this study was to investigate the impacts of slow and controlled release fertilizers(SCRF)on the yield of qiubei hot pepper,its nutrient use efficiency and environment.[Method] Using Qiubei hot pepper(Capsicum frutescens L.)as the experimental material,we studied the fertilization effect and environment-protecting effect of SCRF.[Result] The result showed that SCRF could improve the agronomic characteristics of hot pepper.Compared to singly applied common fertilizers,SCRF increased economic yield by 20.90% and economic benefit by 13 234.35 Yuan/hm2,and the ratio of output to input was improved by 47.93%.In comparison with common straight fertilizers at same NPK proportion and rate,SCRF increased economic yield by 5.26% and economic benefit by 5 554.80 Yuan/hm2,and the ratio of output to input was improved by 9.91%.Under the reduced use of SCRF by 20%,SCRF increased economic yield by 12.38% and economic benefit by 9595.20 Yuan/hm2 compared with singly applied common fertilizers,and the ratio of output to input was improved by 65.95%.SCRF improved nitrogen,phosphorus and potassium use efficiencies by 12.42-17.53,3.35-5.24 and 5.37-14.02 percents respectively.[Conclusion] As the result of much reduced N and P application rates,SCRF would significantly economize fertilizer resources and minimize the pollution caused by the loss of fertilizer nutrients,which is of practical importance for environment protection.
文摘Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.
文摘Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in the Maowusu Sand Area were analyzed and the relation among these characteristics and the resource utilization efficiency, taxonomic categories and growth forms of the species were assessed. The results showed that species from Chenopodiaceae, Gramineae, Leguminosae which possessed the C 4 photosynthesis pathway, or C 3 pathway and also with nitrogen_fixation capacities had higher or the highest P n values, i.e., 20~30 μmol CO 2·m -2 ·s -1 , while that of evergreen shrub of Pinaceae had the lowest P n values, i.e., 0~5 μmol CO 2·m -2 ·s -1 . Those species from Compositae, Scrophulariaceae, and Gramineae with C 3 pathway but no N_fixation capacity had the highest E rates, i.e., 20~30 mmol H 2O·m -2 ·s -1 and again the evergreen shrub together with some species from Salicaceae and Compositae had the lowest E rates, i.e., 0~5 mmol H 2O·m -2 ·s -1 . Species from Leguminosae, Gramineae and Chenopodiaceae with C 4 pathway or C 3 pathway with N_fixation capacity, both shrubs and grasses, generally had higher WUE . However, even the physiological traits of the same species were habitat_ and season_specific. The values of both P n and E in late summer were much higher than those in early summer, with average increases of 26%, 40% respectively in the four habitats. WUE in late summer was, however, 12% lower. Generally, when the environments became drier as a result of habitats changed, i.e., in the order of wetland, lowland, fixed sand dune and shifting sand dune, P n and E decreased but WUE increased.
基金Supported by National Key Technology R&D Program(2006BAD05B06-04)Kunming Science and Technology Program(08S010201)~~
文摘[Objective] The aim was to study the effects of slow release fertilizer on the yield,economic benefit and nutrient use efficiency of carnation and environmental pollution.[Method] Taking carnation(Dianthus caryophyllus)as research object,the application effect and environmental protection effect of slow release fertilizer on carnation were discussed through field plot test.[Result] The main agronomic characters of carnation improved after the application of slow release fertilizer;compared with Conv-F treatment,the yield of carnation with slow release fertilizer increased by 18.67%-20.83%,and its economic benefit increased by 105 500 yuan/hm2,while the ratio of output to input improved by 74.29%;under the same NPK ratio and nutrient amount,the yield,economic benefit and ratio of output to input of carnation after the application of slow release fertilizer increased by 2.11%,14 800 yuan and 16.2%,respectively;besides,the application of slow release fertilizer improved the nutrient use efficiency of carnation,and N,P and K nutrient use efficiency in Opt-F-0.7% treatment increased by 13.88%,8.57% and 30.14% compared with Conv-F treatment.[Conclusion] Slow release fertilizer could not only reduce the waste of fertilizer resources and improve fertilizer use efficiency but also decrease the pollution caused by nutrient loss,which had important practical significance for protecting ecological environment and promoting the sustainable development of agriculture.
基金Supported by Youth Scientific Research Fund of Shanxi Province(2014021031-2)Fund for National System of Broomcorn Millet Industrial Technology of Ministry of Agriculture(CARS-07-13.5)~~
文摘[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material, the effects of deep tillage, traditional tillage and no tillage and rotary tillage on dry matter accumulation, soil water content, water use efficiency and yield of broomcom millet were investi- gated. [Result] Dry matter accumulation rate and accumulated amount were signifi- cantly higher in the deep tillage, no tillage and rotary tillage treatments than in the conventional tillage treatment, and the highest in the deep tillage treatment. The soil water content of the deep tillage treatment at 0-100 cm was higher than those of other tillage techniques, deep tillage also exhibited the highest soil water storage, and water use efficiency values were in order of deep tillage〉rotary tillage〉no tillage〉conventional tillage. The deep tillage treatment also showed the highest grain weight per spike, 1 000-grain weight and yield, while conventional tillage exhibited the lowest values, indicating that deep tillage is most beneficial to improvement of yield and water use efficiency of broomcom millet. [Conclusion] This study provides a scientific basis for water use efficiency of broomcorh millet in its main producing areas.
基金Supported by Agricultural Science &Technology Project of Jiangsu Province(BE2008369)~~
文摘[Objective]The aim was to study heterosis of N use efficiency for grain production (NUEg) of Brassica napus L. and provide theoretical basis for breeding N-efficient cultivars. [Method]Dry matter production and N content of six B.napus parents (Zheshuang 3,Yangyou 7,ZJ1,Shilijia,Ningyou 14 and Huyou 16) and their F1 combinations from 6 × 6 complete diallel cross in maturity stage under two N levels were measured; heterosis of NUEg,combining ability and heritability size were analyzed and calculated. [Result]The results showed that NUEg has obvious heterosis; combining ability variance analysis indicated that NUEg was mainly controlled by additive,dominant and cytoplasmic effects; genetic variance analysis showed that additive effects and dominance effects were all significant in low nitrogen fertilizer and dominance effects were significant in high nitrogen fertilizer. [Conclusion]NUEg of B.napus has obvious heterosis.
基金Supported by National Science and Technology Major Project(2015ZX07204-007)Key Laboratory of Nutrient Cycling and Resources Environment of Anhui Province(1606c08231)Special Fund for Agro-scientific Research in the Public Interest(201503122)~~
文摘The field experiments were conducted in Anhui during 2016 to investigate the effects of controlled-release nitrogen (CRN) rates and mixture of controlled-re- lease nitrogen and conventional nitrogen (CN) on the yield and nitrogen efficiency of summer maize. Six treatments included CK (with no application of N), CNIO0% splits (CN), CRFIO0% (CRN1), CRN60%+CN40% (CRN2), CRN85% (CRN3) and CRN70% (CRN4). The results showed proper CRN increased yields and output val- ue. Compared with CN, CRN2 significantly increased by 13.74%, CRN1 increased by 4.84%, and CRN3 was equal to CN. CRN increased yield by grain number per spike of yield components. CRN2 had the highest apparent nitrogen fertilizer recov- ery efficiency and CRN1 was the second, which were significantly higher than CN. Nitrogen agronomic efficiency of CRN2 was significantly higher than CN. Nitrogen physiological efficiency of CRN2 was higher than CN. The partial productivity of CRN1 was higher than that with CN. And the effect of nitrogen fertilizer of CRN2 was the highest, which was increased 758 yuan/hm2. Considering yield, nitrogen use efficiency and economic benefit, applying the mixture of CRN and CN was the most beneficial treatment. CRN1 was the second treatment, and CRN3 didn't reduce yield.
基金Supported by the Project for Cotton Industry of Hunan Province(Xiangnongyelian[2012]No.278)the Foundation for Talents Stabilization of Hunan Agricultural University(09WD19)~~
文摘The effects of potassium (K) application rates on the yield, fiber quality and K fertilizer use efficiency of three hybrid cotton varieties (Jin102, Xiangzamian8, Siyang328) were studied in field experiment. Fertilizer rates of K2O 135 and 270 kg/hm2, representing 1x and 2x recommended K rates, were applied, no application of k fertilizer as the CK. The results show that the lint yield increased 39.13%-57.48%with potassium application, highly significantly. Al yield components of the three hy-brid cotton varieties increased with the increase of K application amounts. The bol number per plant, single bol weight and lint percentage were increased by 14.24%-40.29%, 3.59%-15.51% and 0.16%-4.89%, respectively, and the fiber length and specific strength also increased with the increasing K application amounts, showing no significant influence on Micronaire. When the K application amounts increased from 135 to 270 kg/hm2, the partial factor productivity (PFPk) reduced by 45.93%-48.01%, and the agronomic efficiency (AEk) reduced by 37.1%-42.9%. The PFPk and KE (K efficiency coefficients) of S328 were the highest among the three varieties, which also showed the strongest resistance to low potassium stress, and with no potassi-um fertilizer application (K0), the lint yield of S328 was 5.54% and 11.19% higher than that of X8 and J102. The AEk of J102 was the highest, and its reward of K fertilizer was the greatest among the three varieties.
基金Supported by National High Technology Research and Development Program of China(863 Program,2011AA100504)National Science and Technology Plan Project(2012BAD04B02)+1 种基金a Grant from the Department of Science and Technology of Jilin Province(20116031)Special Fund for Agro-scientific Research in the Public Interest(201303125)~~
文摘[Objective] This study and nitrogen use efficiency in aimed to investigate the nitrogen dynamic changes maize under different nitrogen application patterns. [Method] Maize cultivar Xianyu 335 was selected as the experimental material and was planted at two densities 85 000 and 95 000 plants/hm2. The total amount of fertilizers applied kept constant. The nitrogen content in leaves, stems, sheathes, husks, grains, cobs, tassels and filaments of maize plants in jointing stage, silking stage, 15, 30, 45 and 60 d after silking stage was measured. [Result] Total nitrogen content in maize plant reached the peak around 45 d after silking stage and a higher population was helpful to nitrogen accumulation. Total nitrogen content of maize plant was positively correlated with yield and it got closer in higher popula- tion. Grain nitrogen content and nitrogen harvest index were significantly positively correlated with yield in higher population. High ratio of nitrogen fertilizer in silking stage was beneficial to nitrogen accumulation in leaf and ear, as well as nitrogen translocation in stem and sheath, but high ratio of nitrogen fertilizer in earlier stage delayed nitrogen metabolism. Nitrogen uptake peak was from silking stage to 15 d after silking stage, and nitrogen uptake rate increased high ratio of nitrogen fertilizer was applied in later growth stages and moved forward in higher plant population. [Conclusion] It was advantaged for nitrogen fertilizer efficiency on condition that ni- trogen application was moved backward. Accumulating too much nitrogen in earlier stages inhibited nitrogen uptake in later periods