In order to estimate the bitterness intensity of citrus products we applied an adaptative sensory evaluation method, using naringin as the reference for bitterness. Twenty-five untrained subjects participated in this ...In order to estimate the bitterness intensity of citrus products we applied an adaptative sensory evaluation method, using naringin as the reference for bitterness. Twenty-five untrained subjects participated in this study. Firstly they tasted and positioned 2 naringin references on an unstructured relative-to-reference scaling to define their own bitterness scales. They then evaluated the bitterness intensity of 2 types of bitter orange products (3 distillates and 2 cold-pressed essential oils of bitter orange peels) according to their own perceptions on their own scales. We observed that 2 types of scale use could be distinguished that might be related to subjects’ sensitivity or/and consumption habits to bitterness. As a result, we observed a significant difference in bitterness intensity between the crude cold-pressed essential oil and the debittered one of bitter orange, whereas there was no significant difference between the 3 distillates. This approach makes it possible to take inter-individual differences in subjects’ sensitivity into account. It also provides a way to very simply rate bitterness intensity with subjects who have received no prior training in sensory evaluation.展开更多
Mesh motion strategy is one of the key points in many fluid-structure interaction problems. One popular technique used to solve this problem is known as the spring analogy method. In this paper a new mesh update appro...Mesh motion strategy is one of the key points in many fluid-structure interaction problems. One popular technique used to solve this problem is known as the spring analogy method. In this paper a new mesh update approach based on the spring analogy method is presented for the effective treatment of mesh moving boundary problems. The proposed mesh update technique is developed to avoid the generation of squashed invalid elements and maintain mesh quality by considering each element shape and grid scale to the definition of the spring stiffness. The method is applied to several 2D and 3D boundary correction problems for fully unstructured meshes and evaluated by a mesh quality indicator. With these applications,it is demonstrated that the present method preserves mesh quality even under large motions of bodies. We highlight the advantages of this method with respect to robustness and mesh quality.展开更多
文摘In order to estimate the bitterness intensity of citrus products we applied an adaptative sensory evaluation method, using naringin as the reference for bitterness. Twenty-five untrained subjects participated in this study. Firstly they tasted and positioned 2 naringin references on an unstructured relative-to-reference scaling to define their own bitterness scales. They then evaluated the bitterness intensity of 2 types of bitter orange products (3 distillates and 2 cold-pressed essential oils of bitter orange peels) according to their own perceptions on their own scales. We observed that 2 types of scale use could be distinguished that might be related to subjects’ sensitivity or/and consumption habits to bitterness. As a result, we observed a significant difference in bitterness intensity between the crude cold-pressed essential oil and the debittered one of bitter orange, whereas there was no significant difference between the 3 distillates. This approach makes it possible to take inter-individual differences in subjects’ sensitivity into account. It also provides a way to very simply rate bitterness intensity with subjects who have received no prior training in sensory evaluation.
基金the National Natural Science Foundation of China(No.50778111)the Doctoral Disciplinary Special Research Project of Chinese Ministry of Education(No.200802480056)the Key Project of Fund of Science Technology Development of Shanghai(No.07JC14023)
文摘Mesh motion strategy is one of the key points in many fluid-structure interaction problems. One popular technique used to solve this problem is known as the spring analogy method. In this paper a new mesh update approach based on the spring analogy method is presented for the effective treatment of mesh moving boundary problems. The proposed mesh update technique is developed to avoid the generation of squashed invalid elements and maintain mesh quality by considering each element shape and grid scale to the definition of the spring stiffness. The method is applied to several 2D and 3D boundary correction problems for fully unstructured meshes and evaluated by a mesh quality indicator. With these applications,it is demonstrated that the present method preserves mesh quality even under large motions of bodies. We highlight the advantages of this method with respect to robustness and mesh quality.