期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
单图像超分辨率多尺度特征融合网络 被引量:2
1
作者 赵光辉 杨晓敏 《现代计算机》 2023年第8期67-74,共8页
提出一种用于单图像超分辨率任务的多尺度特征融合网络,该网络包含特征下采样、多尺度特征融合和增加额外约束方案。首先,构建了包含Pixel⁃Unshuffle操作的特征下采样模块获得浅层多尺度特征,进一步学习深层多尺度特征融合,并通过多尺... 提出一种用于单图像超分辨率任务的多尺度特征融合网络,该网络包含特征下采样、多尺度特征融合和增加额外约束方案。首先,构建了包含Pixel⁃Unshuffle操作的特征下采样模块获得浅层多尺度特征,进一步学习深层多尺度特征融合,并通过多尺度特征融合提高超分辨率性能。此外,使用包含Pixel⁃Unshuffle操作的特征下采样模块从SR图像中重建LR图像,并计算其与LR图像之间的损失增加额外约束。大量的实验证明,提出的方法与现有的方法相比表现出具有竞争力的性能。 展开更多
关键词 图像超分辨率 深度学习 Pixel⁃unshuffle 特征融合
在线阅读 下载PDF
Algebra and Coalgebra on Posets
2
作者 Rongrong Yuan Huilan Li 《Open Journal of Applied Sciences》 CAS 2022年第7期1232-1242,共11页
A lot of combinatorial objects have algebra and coalgebra structures and posets are important combinatorial objects. In this paper, we construct algebra and coalgebra structures on the vector space spanned by posets. ... A lot of combinatorial objects have algebra and coalgebra structures and posets are important combinatorial objects. In this paper, we construct algebra and coalgebra structures on the vector space spanned by posets. Firstly, by associativity and the unitary property, we prove that the vector space with the conjunction product is a graded algebra. Then by the definition of free algebra, we prove that the algebra is free. Finally, by the coassociativity and the counitary property, we prove that the vector space with the unshuffle coproduct is a graded coalgebra. 展开更多
关键词 Conjunction Product unshuffle Coproduct POSET GRADED Free
在线阅读 下载PDF
Hopf Algebra of Labeled Simple Graphs
3
作者 Jiaming Dong Huilan Li 《Open Journal of Applied Sciences》 CAS 2023年第1期120-135,共16页
A lot of combinatorial objects have a natural bialgebra structure. In this paper, we prove that the vector space spanned by labeled simple graphs is a bialgebra with the conjunction product and the unshuffle coproduct... A lot of combinatorial objects have a natural bialgebra structure. In this paper, we prove that the vector space spanned by labeled simple graphs is a bialgebra with the conjunction product and the unshuffle coproduct. In fact, it is a Hopf algebra since it is graded connected. The main conclusions are that the vector space spanned by labeled simple graphs arising from the unshuffle coproduct is a Hopf algebra and that there is a Hopf homomorphism from permutations to label simple graphs. 展开更多
关键词 Hopf Algebra Labeled Simple Graph Conjunction Product unshuffle Coproduct Compatibility
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部