Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection metho...Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection methods,this paper proposes an enhanced fault detection method based on the unscented Kalman filter(UKF).A comprehensive mathematical model of the brushless DC motor drive system is developed to provide a theoretical foundation for the design of subsequent fault detection methods.The conventional UKF estimation process is detailed,and its limitations in balancing estimation accuracy and robustness are addressed by introducing a dynamic,time-varying boundary layer.To further enhance detection performance,the method incorporates residual analysis using improved z-score and signal-tonoise ratio(SNR)metrics.Numerical simulations under both fault-free and faulty conditions demonstrate that the proposed approach achieves lower root mean square error(RMSE)in fault-free scenarios and provides reliable fault detection.These results highlight the potential of the proposed method to enhance the reliability and robustness of fault detection in industrial robot drive systems.展开更多
In this paper,an algorithm on measurement noise with adaptive strong tracking unscented Kalman filter(ASTUKF)is advanced to improve the precision of pose estimation and the stability for data computation.To suppress h...In this paper,an algorithm on measurement noise with adaptive strong tracking unscented Kalman filter(ASTUKF)is advanced to improve the precision of pose estimation and the stability for data computation.To suppress high-frequency noise,an infinite impulse response filter(IIRF)is introduced at the front end of ASTUKF to preprocess the original data.Then the covariance matrix of the error is corrected and the measurement noise is estimated in the process of filtering.After that,the data from the experiment were tested on the hardware experiment platform.The experimental results show that compared to the traditional extended Kalman filter(EKF)and unscented Kalman filter(UKF)algorithms,the root mean square error(RMSE)of the roll axis results from the algorithm proposed in this paper is respectively reduced by approximately 57.5%and 36.1%;the RMSE of the pitch axis results decreases by nearly 58.4%and 51.5%,respectively;and the RMSE of the yaw axis results decreases almost 62.8%and 50.9%,correspondingly.The above results indicate that the algorithm enhances the ability of resisting high-frequency vibration interference and improves the accuracy of attitude solution.展开更多
The tire-road friction coefficient(TRFC)plays a critical role in vehicle safety and dynamic stability,with model-based approaches being the primary method for TRFC estimation.However,the accuracy of these methods is o...The tire-road friction coefficient(TRFC)plays a critical role in vehicle safety and dynamic stability,with model-based approaches being the primary method for TRFC estimation.However,the accuracy of these methods is often constrained by the complexity of tire force expressions and uncertainties in tire model parameters,particularly under diverse and complex driving conditions.To address these challenges,this paper proposes a novel data enforced unscented Kalman filter(DeUKF)approach for precise TRFC estimation in intelligent chassis systems.First,an Unscented Kalman Filter is constructed using a nominal tire model-based vehicle dynamics formulation.Then,leveraging Willems’Fundamental Lemma and historical real-world driving data,the vehicle dynamics model is adap-tively corrected within the Unscented Kalman Filter framework.This correction effectively mitigates the adverse effects of tire model uncertainties,thereby enhancing TRFC estimation accuracy.Finally,real vehicle experiments are conducted to validate the effectiveness and superiority of the proposed method.展开更多
A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman...A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.展开更多
基金Supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(22KJB520012)the Research Project on Higher Education Reform in Jiangsu Province(2023JSJG781)the College Student Innovation and Entrepreneurship Training Program Project(202313571008Z)。
文摘Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection methods,this paper proposes an enhanced fault detection method based on the unscented Kalman filter(UKF).A comprehensive mathematical model of the brushless DC motor drive system is developed to provide a theoretical foundation for the design of subsequent fault detection methods.The conventional UKF estimation process is detailed,and its limitations in balancing estimation accuracy and robustness are addressed by introducing a dynamic,time-varying boundary layer.To further enhance detection performance,the method incorporates residual analysis using improved z-score and signal-tonoise ratio(SNR)metrics.Numerical simulations under both fault-free and faulty conditions demonstrate that the proposed approach achieves lower root mean square error(RMSE)in fault-free scenarios and provides reliable fault detection.These results highlight the potential of the proposed method to enhance the reliability and robustness of fault detection in industrial robot drive systems.
基金supported by the Key Research and Development Program of Shaanxi Province(No.2024NC-YBXM-246)the Shaanxi Provincial Science and Technology Department(No.2024JC-YBQN-0725)+1 种基金the Education Department of Shaanxi Province(No.23JK0371)the Shaanxi University of Technology(No.SLGRCQD2318).
文摘In this paper,an algorithm on measurement noise with adaptive strong tracking unscented Kalman filter(ASTUKF)is advanced to improve the precision of pose estimation and the stability for data computation.To suppress high-frequency noise,an infinite impulse response filter(IIRF)is introduced at the front end of ASTUKF to preprocess the original data.Then the covariance matrix of the error is corrected and the measurement noise is estimated in the process of filtering.After that,the data from the experiment were tested on the hardware experiment platform.The experimental results show that compared to the traditional extended Kalman filter(EKF)and unscented Kalman filter(UKF)algorithms,the root mean square error(RMSE)of the roll axis results from the algorithm proposed in this paper is respectively reduced by approximately 57.5%and 36.1%;the RMSE of the pitch axis results decreases by nearly 58.4%and 51.5%,respectively;and the RMSE of the yaw axis results decreases almost 62.8%and 50.9%,correspondingly.The above results indicate that the algorithm enhances the ability of resisting high-frequency vibration interference and improves the accuracy of attitude solution.
基金Supported by the China’s National Key R&D Program(Grant No.2022YFB2503103).
文摘The tire-road friction coefficient(TRFC)plays a critical role in vehicle safety and dynamic stability,with model-based approaches being the primary method for TRFC estimation.However,the accuracy of these methods is often constrained by the complexity of tire force expressions and uncertainties in tire model parameters,particularly under diverse and complex driving conditions.To address these challenges,this paper proposes a novel data enforced unscented Kalman filter(DeUKF)approach for precise TRFC estimation in intelligent chassis systems.First,an Unscented Kalman Filter is constructed using a nominal tire model-based vehicle dynamics formulation.Then,leveraging Willems’Fundamental Lemma and historical real-world driving data,the vehicle dynamics model is adap-tively corrected within the Unscented Kalman Filter framework.This correction effectively mitigates the adverse effects of tire model uncertainties,thereby enhancing TRFC estimation accuracy.Finally,real vehicle experiments are conducted to validate the effectiveness and superiority of the proposed method.
文摘A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.