期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Re-examination on isothermal oxidation kinetics of vanadium–titanium magnetite pellets
1
作者 Yong-kang Zhang Guang-hui Li +4 位作者 Ye-sheng Cheng Cheng-zhi Wei Jin Zhang Xin Zhang Tao Jiang 《Journal of Iron and Steel Research International》 2025年第10期3176-3189,共14页
The factors affecting the oxidation degree of vanadium–titanium magnetite (VTM) pellets were analyzed via the isothermal oxidation experiment. Furthermore, the oxidation kinetics of VTM pellets were explored through ... The factors affecting the oxidation degree of vanadium–titanium magnetite (VTM) pellets were analyzed via the isothermal oxidation experiment. Furthermore, the oxidation kinetics of VTM pellets were explored through linear fitting to the kinetic equations based on the shrinking unreacted-core model. The results reveal that VTM pellets undergo oxidation in three distinct phases: pre-oxidation, mid-oxidation, and final stable phase. Notably, the mid-oxidation phase is absent in magnetite oxidation. The shrinking unreacted-core model has been proven to be suitable for modeling the process of oxidizing VTM pellets. In the pre-oxidation stage, the rate-controlling step is determined by both the oxidation temperature and the effective oxygen concentration. The influence of the effective oxygen concentration on the rate of oxidation is more pronounced at temperatures between 1073 and 1273 K, especially when the oxygen content falls below 15 vol.%. For the production of oxidized VTM pellets, it is necessary to maintain a preheating temperature above 1173 K (to accelerate the oxidation reaction) and below 1473 K (to prevent the swift formation of compact Fe2TiO5 at the shell of the pellet) in an oxygen-enriched atmosphere. 展开更多
关键词 Vanadium-titanium magnetite PELLET Shrinking unreacted-core model Isothermal oxidation kinetics
原文传递
Kinetic model for calcium sulfate decomposition at high temperature 被引量:10
2
作者 闫志强 王泽安 +2 位作者 王小锋 刘豪 邱建荣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3490-3497,共8页
A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve... A modified shrinking unreacted-core model,based on thermogravimetric analysis,was developed to investigate CaSO4 decomposition in oxy-fuel combustion,especially under isothermal condition which is difficult to achieve in actual experiments due to high-temperature corrosion.A method was proposed to calculate the reaction rate constant for CaSO4 decomposition.Meanwhile,the diffusion of SO2 and O2,and the sintering of CaO were fully considered during the development of model.The results indicate that the model can precisely predict the decomposition of CaSO4 under high SO2 concentration(1100×10-6).Concentrations of SO2 and O2 on the unreacted-core surface were found to increase first and then decrease with increasing temperature,and the average specific surface area and porosity of each CaO sintering layer decreased with increasing time.The increase of SO2 and/or O2 concentration inhibited CaSO4 decomposition.Moreover,the kinetics of CaSO4 decomposition had obvious dependence on temperature and the decomposition rate can be dramatically accelerated with increasing temperature. 展开更多
关键词 oxy-fuel combustion shrinking unreacted-core model CASO4 DECOMPOSITION CaO sintering
在线阅读 下载PDF
Reaction Rate Characteristics of SrBr2 Hydration System for Chemical Heat Pump Cooling Mode 被引量:2
3
作者 Takehiro Esaki Noriyuki Kobayashi 《Journal of Materials Science and Chemical Engineering》 2016年第2期106-115,共10页
Here, we propose a chemical heat pump chiller with a SrBr<sub>2</sub> hydration reaction system for utilization of waste heat. The SrBr<sub>2</sub> hydration reaction could recover waste heat i... Here, we propose a chemical heat pump chiller with a SrBr<sub>2</sub> hydration reaction system for utilization of waste heat. The SrBr<sub>2</sub> hydration reaction could recover waste heat in low temperatures ranging from 373 K to 353 K, and the system showed good potential in terms of the high cooling thermal-storage density. Previous studies have given little information on the reaction characteristics of the SrBr<sub>2</sub> hydration reaction. In this paper, we developed a measuring method for the hydration reaction equilibrium and reaction rate based on the volumetric method. We analyzed the hydration reaction rate with an unreacted-core shell model. In the experiments, the SrBr<sub>2</sub> equilibrium temperature observed was equal to the theoretical equilibrium temperature obtained from thermodynamic databases. In addition, the hysteresis gap between the hydration and dehydration values was 2.0 K. Thus, the hysteresis effect was negligible for the chemical heat pump cooling operation. The reaction fraction of the SrBr<sub>2</sub> hydration reached 0.7 within 20 s. By analyzing the hydration reaction rate with the unreacted-core shell model, the activation energy value was calculated to be56.6 kJ/mol. The calculation results showed good agreement with those of the experiment as the reaction fraction reached 0.7. 展开更多
关键词 Chemical Heat Pump SrBr2 Hydration HYSTERESIS unreacted-core Shell Model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部