期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improving enzymatic degradation of unpretreated poly(ethylene terephthalate)
1
作者 Yufeng Cao La Xiang +4 位作者 Jasmina Nikodinovic-Runic Veselin Maslak Jian-Ming Jin Chaoning Liang Shuang-Yan Tang 《Chinese Journal of Catalysis》 2025年第4期375-389,共15页
Although the efficiency of poly(ethylene terephthalate)(PET)degradation has been successfully improved by depolymerase engineering,mostly by using Goodfellow-PET(gf-PET)as a substrate,efforts to degrade unpretreated P... Although the efficiency of poly(ethylene terephthalate)(PET)degradation has been successfully improved by depolymerase engineering,mostly by using Goodfellow-PET(gf-PET)as a substrate,efforts to degrade unpretreated PET materials with high crystallinity remain insufficient.Here,we endeavored to improve the degradation capability of a WCCG mutant of leaf-branch compost cutinase(LCC)on a unpretreated PET substrate(crystallinity>40%)by employing iterative saturation mutagenesis.Using this method,we developed a high-throughput screening strategy appropriate for unpretreated substrates.Through extensive screening of residues around the substrate-binding groove,two variants,WCCG-sup1 and WCCG-sup2,showed good depolymerization capabilities with both high-(42%)and low-crystallinity(9%)substrates.The WCCG-sup1 variant completely depolymerized a commercial unpretreated PET product in 36 h at 72℃.In addition to enzyme thermostability and catalytic efficiency,the adsorption of enzymes onto substrates plays an important role in PET degradation.This study provides valuable insights into the structure-function relationship of LCC. 展开更多
关键词 Iterative saturation mutagenesis Poly(ethylene terephthalate) depolymerization efficiency Substrate adsorption Leaf-branch compost cutinase unpretreated poly(ethylene terephthalate)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部