Partial Differential Equations(PDEs)are model candidates of soft sensing for aero-engine health management units.The existing Physics-Informed Neural Networks(PINNs)have made achievements.However,unmeasurable aero-eng...Partial Differential Equations(PDEs)are model candidates of soft sensing for aero-engine health management units.The existing Physics-Informed Neural Networks(PINNs)have made achievements.However,unmeasurable aero-engine driving sources lead to unknown PDE driving terms,which weaken PINNs feasibility.To this end,Physically Informed Hierarchical Learning followed by Recurrent-Prediction Term(PIHL-RPT)is proposed.First,PIHL is proposed for learning nonhomogeneous PDE solutions,in which two networks NetU and NetG are constructed.NetU is for learning solutions satisfying PDEs;NetG is for learning driving terms to regularize NetU training.Then,we propose a hierarchical learning strategy to optimize and couple NetU and NetG,which are integrated into a data-physics-hybrid loss function.Besides,we prove PIHL-RPT can iteratively generate a series of networks converging to a function,which can approximate a solution to well-posed PDE.Furthermore,RPT is proposed for prediction improvement of PIHL,in which network NetU-RP is constructed to compensate for information loss caused by data sampling and driving sources’immeasurability.Finally,artificial datasets and practical vibration process datasets from our wear experiment platform are used to verify the feasibility and effectiveness of PIHL-RPT based soft sensing.Meanwhile,comparisons with relevant methods,discussions,and PIHL-RPT based health monitoring example are given.展开更多
In this paper, we propose a H∞ robust observer-based control DC motor based on a photovoltaic pumping system. Maximum power point tracking is achieved via an algorithm using Perturb and Observe method, with array vol...In this paper, we propose a H∞ robust observer-based control DC motor based on a photovoltaic pumping system. Maximum power point tracking is achieved via an algorithm using Perturb and Observe method, with array voltage and current being used to generate the reference voltage which should be the PV panel’s operating voltage to get maximum available power. A Takagi-Sugeno (T-S) observer has been proposed and designed with non-measurable premise variables and the conditions of stability are given in terms of Linear Matrix Inequality (LMI). The simulation results show the effectiveness and robustness of the proposed method.展开更多
In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the fram...In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics.展开更多
Inverter-based distributed generations(IBDGs)are the main approach to utilizing clean energy in distribution networks(DNs).Compared with synchronous source,fault response of IBDG is very different.As a result,in DNs w...Inverter-based distributed generations(IBDGs)are the main approach to utilizing clean energy in distribution networks(DNs).Compared with synchronous source,fault response of IBDG is very different.As a result,in DNs with high penetration of IBDGs,legacy protection schemes will no longer be applicable.In this paper,an energy-based directional pilot protection scheme suitabie for DNs with IBDGs is proposed.This scheme considers the large range of phase angle caused by IBDG integration and uses improved energy polarity criterion to determine fault direction.In addition,magnitude of energy is used to distinguish between faults and load switching to overcome maloperation of directional pilot protection caused by internal unmeasured load switching.The proposed scheme first uses local measured information to determine fault direction sign and then exchanges the direction sign with the remote terminal.This scheme does not require high-bandwidth communication and strict data synchronization,so it can be implemented at a low cost.Finally,simulation studies verify effectiveness of the proposed scheme.展开更多
Aims The limitations of classical Lotka–Volterra models for analyzing and interpreting competitive interactions among plant species have become increasingly clear in recent years.Three of the problems that have been ...Aims The limitations of classical Lotka–Volterra models for analyzing and interpreting competitive interactions among plant species have become increasingly clear in recent years.Three of the problems that have been identified are(i)the absence of frequency-dependence,which is important for long-term coexistence of species,(ii)the need to take unmeasured(often unmeasurable)variables influencing individual performance into account(e.g.spatial variation in soil nutrients or pathogens)and(iii)the need to separate measurement error from biological variation.Methods We modified the classical Lotka–Volterra competition models to address these limitations.We fitted eight alternative models to pin-point cover data on Festuca ovina and Agrostis capillaris over 3 years in an herbaceous plant community in Denmark.A Bayesian modeling framework was used to ascertain whether the model amendments improve the performance of the models and increase their ability to predict community dynamics and to test hypotheses.Important Findings Inclusion of frequency-dependence and measurement error,but not unmeasured variables,improved model performance greatly.Our results emphasize the importance of comparing alternative models in quantitative studies of plant community dynamics.Only by considering possible alternative models can we identify the forces driving community assembly and change,and improve our ability to predict the behavior of plant communities.展开更多
Background: Properly adjusting for unmeasured confounders is critical for health studies in order to achieve valid testing and estimation of the exposure's causal effect on outcomes. The instrumental variable (IV)...Background: Properly adjusting for unmeasured confounders is critical for health studies in order to achieve valid testing and estimation of the exposure's causal effect on outcomes. The instrumental variable (IV) method has long been used in econometrics to estimate causal effects while accommodating the effect of unmeasured confounders. Mendefian randomization (MR), which uses genetic variants as the instrumental variables, is an application of the instrumental variable method to biomedical research fields, and has become popular in recent years. One often-used estimator of causal effects for instrumental variables and Mendelian randomization is the two-stage least square estimator (TSLS). The validity of TSLS relies on the accurate prediction of exposure based on IVs in its first stage. Results: In this note, we propose to model the link between exposure and genetic IVs using the least-squares kernel machine (LSKM). Some simulation studies are used to evaluate the feasibility of LSKM in TSLS setting. Conclusions: Our results show that LSKM based on genotype score or genotype can be used effectively in TSLS. It may provide higher power when the association between exposure and genetic IVs is nonlinear.展开更多
基金supported in part by the National Science and Technology Major Project of China(No.2019-I-0019-0018)the National Natural Science Foundation of China(Nos.61890920,61890921,12302065 and 12172073).
文摘Partial Differential Equations(PDEs)are model candidates of soft sensing for aero-engine health management units.The existing Physics-Informed Neural Networks(PINNs)have made achievements.However,unmeasurable aero-engine driving sources lead to unknown PDE driving terms,which weaken PINNs feasibility.To this end,Physically Informed Hierarchical Learning followed by Recurrent-Prediction Term(PIHL-RPT)is proposed.First,PIHL is proposed for learning nonhomogeneous PDE solutions,in which two networks NetU and NetG are constructed.NetU is for learning solutions satisfying PDEs;NetG is for learning driving terms to regularize NetU training.Then,we propose a hierarchical learning strategy to optimize and couple NetU and NetG,which are integrated into a data-physics-hybrid loss function.Besides,we prove PIHL-RPT can iteratively generate a series of networks converging to a function,which can approximate a solution to well-posed PDE.Furthermore,RPT is proposed for prediction improvement of PIHL,in which network NetU-RP is constructed to compensate for information loss caused by data sampling and driving sources’immeasurability.Finally,artificial datasets and practical vibration process datasets from our wear experiment platform are used to verify the feasibility and effectiveness of PIHL-RPT based soft sensing.Meanwhile,comparisons with relevant methods,discussions,and PIHL-RPT based health monitoring example are given.
文摘In this paper, we propose a H∞ robust observer-based control DC motor based on a photovoltaic pumping system. Maximum power point tracking is achieved via an algorithm using Perturb and Observe method, with array voltage and current being used to generate the reference voltage which should be the PV panel’s operating voltage to get maximum available power. A Takagi-Sugeno (T-S) observer has been proposed and designed with non-measurable premise variables and the conditions of stability are given in terms of Linear Matrix Inequality (LMI). The simulation results show the effectiveness and robustness of the proposed method.
基金Supported by the Startup Foundation of Hangzhou Dianzi University(ZX150204302002/009)the Open Project Program of the State Key Laboratory of Industrial Control Technology(Zhejiang University)National Natural Science Foundation of China(No.61374142,61273145,and 61273146)
文摘In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics.
基金supported in part by The Spring City Industry Leadership Talent Support Program(2018014)in part by Science and Technology Project of State Grid Corporation of China(2020A-048)。
文摘Inverter-based distributed generations(IBDGs)are the main approach to utilizing clean energy in distribution networks(DNs).Compared with synchronous source,fault response of IBDG is very different.As a result,in DNs with high penetration of IBDGs,legacy protection schemes will no longer be applicable.In this paper,an energy-based directional pilot protection scheme suitabie for DNs with IBDGs is proposed.This scheme considers the large range of phase angle caused by IBDG integration and uses improved energy polarity criterion to determine fault direction.In addition,magnitude of energy is used to distinguish between faults and load switching to overcome maloperation of directional pilot protection caused by internal unmeasured load switching.The proposed scheme first uses local measured information to determine fault direction sign and then exchanges the direction sign with the remote terminal.This scheme does not require high-bandwidth communication and strict data synchronization,so it can be implemented at a low cost.Finally,simulation studies verify effectiveness of the proposed scheme.
文摘Aims The limitations of classical Lotka–Volterra models for analyzing and interpreting competitive interactions among plant species have become increasingly clear in recent years.Three of the problems that have been identified are(i)the absence of frequency-dependence,which is important for long-term coexistence of species,(ii)the need to take unmeasured(often unmeasurable)variables influencing individual performance into account(e.g.spatial variation in soil nutrients or pathogens)and(iii)the need to separate measurement error from biological variation.Methods We modified the classical Lotka–Volterra competition models to address these limitations.We fitted eight alternative models to pin-point cover data on Festuca ovina and Agrostis capillaris over 3 years in an herbaceous plant community in Denmark.A Bayesian modeling framework was used to ascertain whether the model amendments improve the performance of the models and increase their ability to predict community dynamics and to test hypotheses.Important Findings Inclusion of frequency-dependence and measurement error,but not unmeasured variables,improved model performance greatly.Our results emphasize the importance of comparing alternative models in quantitative studies of plant community dynamics.Only by considering possible alternative models can we identify the forces driving community assembly and change,and improve our ability to predict the behavior of plant communities.
基金This research was supported by the National Science Foundation under Grant (No. NSF ABI 1457935) and the National Institutes of Health under Grant (No. R01 GM117946).
文摘Background: Properly adjusting for unmeasured confounders is critical for health studies in order to achieve valid testing and estimation of the exposure's causal effect on outcomes. The instrumental variable (IV) method has long been used in econometrics to estimate causal effects while accommodating the effect of unmeasured confounders. Mendefian randomization (MR), which uses genetic variants as the instrumental variables, is an application of the instrumental variable method to biomedical research fields, and has become popular in recent years. One often-used estimator of causal effects for instrumental variables and Mendelian randomization is the two-stage least square estimator (TSLS). The validity of TSLS relies on the accurate prediction of exposure based on IVs in its first stage. Results: In this note, we propose to model the link between exposure and genetic IVs using the least-squares kernel machine (LSKM). Some simulation studies are used to evaluate the feasibility of LSKM in TSLS setting. Conclusions: Our results show that LSKM based on genotype score or genotype can be used effectively in TSLS. It may provide higher power when the association between exposure and genetic IVs is nonlinear.