Let t(G) be the number of unitary factors of finite abelian group G. In this paper we prove T(x)=∑<sub>(</sub>G≤()t(G) =main terms+O(x<sup>(</sup>(1+2k)/(3+4k)for any exponent pa...Let t(G) be the number of unitary factors of finite abelian group G. In this paper we prove T(x)=∑<sub>(</sub>G≤()t(G) =main terms+O(x<sup>(</sup>(1+2k)/(3+4k)for any exponent pair (k, 1/2+2K). which improves on the exponent 9/25 obtained by Xiaodong Cao and the author.展开更多
In this paper,a new matrix decomposition called the weighted polar decomposition is considered.Two uniqueness theorems of weighted polar decomposition are presented,and the best approximation property of weighted unit...In this paper,a new matrix decomposition called the weighted polar decomposition is considered.Two uniqueness theorems of weighted polar decomposition are presented,and the best approximation property of weighted unitary polar factor and perturbation bounds for weighted polar decomposition are also studied.展开更多
基金Supported by MCME and Natural Science Foundation of Shandong Province(Grant No. Q98A02110)
文摘Let t(G) be the number of unitary factors of finite abelian group G. In this paper we prove T(x)=∑<sub>(</sub>G≤()t(G) =main terms+O(x<sup>(</sup>(1+2k)/(3+4k)for any exponent pair (k, 1/2+2K). which improves on the exponent 9/25 obtained by Xiaodong Cao and the author.
文摘In this paper,a new matrix decomposition called the weighted polar decomposition is considered.Two uniqueness theorems of weighted polar decomposition are presented,and the best approximation property of weighted unitary polar factor and perturbation bounds for weighted polar decomposition are also studied.