期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Shear strength behavior of hydrate-bearing sediments under varying dissociation conditions
1
作者 Pan Chen Jiaqiang Xu +6 位作者 Qi Fan Zhenyu Zhu Shuai Feng Yuan Zhou Ying Zheng Dongchuan Xue Changfu Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3819-3832,共14页
Shear strength of hydrate-bearing sediment is an essential parameter for assessing landslide potential ofhydrate reservoirs under exploration conditions. However, the characteristics and simulation of thisshear streng... Shear strength of hydrate-bearing sediment is an essential parameter for assessing landslide potential ofhydrate reservoirs under exploration conditions. However, the characteristics and simulation of thisshear strength under varying dissociation conditions have not been thoroughly investigated. To this end,a series of triaxial compression tests were first carried out on sediments with varying initial hydratesaturations along dissociation pathways. Combining measured data with microscale analysis, the underlyingmechanism for the evolution of shear strength in hydrate-bearing sediment was studied undervarying partial dissociation pathways. Moreover, a shear strength model for hydrate-bearing sedimentwas proposed, taking into account the hydrate saturation and the unhydrated water content. Apart fromthe parameters derived from the hydrate characteristic curve, only one additional model parameter isrequired. The proposed model was validated using measured data on hydrate sediments. The resultsindicate that the proposed model can effectively capture the shear strength behavior of hydrate-bearingsediment under varying dissociation paths. Finally, a sensitivity analysis of the model parameters wasconducted to characterize the proposed model. 展开更多
关键词 Shear strength Hydrate-bearing sediment Hydrate saturation unhydrated water Hydrate dissociation
在线阅读 下载PDF
Intrinsic correlation between the generalized phase equilibrium condition and mechanical behaviors in hydrate-bearing sediments
2
作者 Jiazuo Zhou Changfu Wei +2 位作者 Rongtao Yan Yuan Zhou Yi Dong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2822-2832,共11页
The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing ... The phase equilibrium and mechanical behaviors of natural gas hydrate-bearing sediment are essential for gas recovery from hydrate reservoirs.In heating closed systems,the temperature-pressure path of hydrate-bearing sediment deviates from that of pure bulk hydrate,reflecting the porous media effect in phase equilibrium.A generalized phase equilibrium equation was established for hydrate-bearing sediments,which indicates that both capillary and osmotic pressures cause the phase equilibrium curve to shift leftward on the temperature-pressure plane.In contrast to bulk hydrate,hydrate-bearing sediment always contains a certain amount of unhydrated water,which keeps phase equilibrium with the hydrate within the hydrate stability field.With changes in temperature and pressure,a portion of pore hydrate and unhydrated water may transform into each other,affecting the shear strength of hydrate-bearing sediment.A shear strength model is proposed to consider not only hydrate saturation but also the change in temperature and pressure of hydrate-bearing sediment.The model is validated by experimental data with various hydrate saturation,temperature and pressure conditions.The deformation induced by partial dissociation was studied through depressurization tests under constant effective stress.The reduction in gas pressure within the hydrate stability field indeed caused sediment deformation.The dissociation-induced deformation can be reasonably estimated as the difference in volume between hydrate-bearing and hydrate-free sediments from the compression curves. 展开更多
关键词 Hydrate-bearing sediment Generalized phase equilibrium unhydrated water Partial dissociation Mechanical behavior
在线阅读 下载PDF
Shear strength degradation of gas hydrate-bearing sediment due to partial hydrate dissociation
3
作者 Yuan Zhou Jiazuo Zhou +1 位作者 Pan Chen Changfu Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2749-2763,共15页
Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of po... Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of pore hydrate and the shear strength of the soil.As one of the key constitutive components,the phase equilibrium condition enforces a constraint over pore gas pressure,temperature and unhydrated water content.Such a constraint,however,has been traditionally ignored in analyzing the mechanical behavior of hydrate-bearing soil.In this paper,a series of stepwise hydrate dissociation tests was performed,and the phase equilibrium condition of pore hydrate was determined,providing an effective way to evaluate the unhydrated water content during hydrate dissociation.Meanwhile,a series of direct shear tests was also conducted to explore the shear strength characteristics of the soil.It is shown that the shear strength of the hydrate-bearing soil can be significantly influenced by pore gas pressure,unhydrated water content,hydrate saturation and several other factors.In particular,the measured shear strength depends upon the initial water content of the sample,pointing to a potential problem that the shear strength could be wrongly determined if not properly interpreted.A shear strength criterion,which enforces the equilibrium condition of pore hydrate,is developed for hydrate-bearing soil,establishing a link between the equilibrium condition and the shear strength.The proposed equation describes well the shear strength characteristics of hydrate-bearing soils,remarkably unifying the effects of pore pressure,temperature,water content and hydrate saturation. 展开更多
关键词 Hydrate-bearing soil Phase equilibrium condition Shear strength unhydrated water content Mechanical behavior
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部