CO_(2)-enhanced oil recovery(CO_(2)-EOR)is an economically viable carbon capture,utilization,and storage(CCUS)technique that is widely practiced and greatly contributes to the achievement of carbon-neutral cities.Howe...CO_(2)-enhanced oil recovery(CO_(2)-EOR)is an economically viable carbon capture,utilization,and storage(CCUS)technique that is widely practiced and greatly contributes to the achievement of carbon-neutral cities.However,studies on CO_(2)-EOR source-sink matching involving different emission sources,different carbon capture rates,and stepwise CO_(2)pipeline construction are scarce.Considering four types of carbon sources,including coal-fired power,iron and steel,cement,and chemical plants,with different CO_(2)capture rates(85%,90%,95%,and 100%,respectively),and using a five-phased construction plan with a 25-year build-up period,we developed a method for quantifying carbon emissions from different sources,calculating the effective storage of carbon in CO_(2)-EOR and optimizing CO_(2)-EOR source-sink matching to reduce project costs.Using the Subei Basin in the Jiangsu Province,China,as a case study,we calculated the theoretical CO_(2)-EOR storage to be 1.7408×10^(8)t and the effective CO_(2)-EOR storage to be 0.435×10^(8)t.We analyzed the completion rate of transportation pipelines,the number of connected carbon sources,and the mass of CO_(2)stored,as well as the cost-effectiveness and sensitivity.Implementation of CO_(2)-EOR effectively reduced the total cost of source-sink matching in the five-stage 25-year construction approach.The reduction of CO_(2)capture rates had no effect on the value of oil repelling.The capture cost significantly affected the total cost of source-sink matching,and the impacts of the carbon sources on the total cost were in the order coal-fired power>iron and steel>cement>chemical plants.This study provides an innovative tool for evaluating the CO_(2)storage potential of CO_(2)-EOR and provides an important framework for implementing CO_(2)-EOR and planning CCUS projects in the Subei Basin and similar regions.展开更多
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20231488National Natural Science Foundation of China,Grant/Award Numbers:52378083,52078481。
文摘CO_(2)-enhanced oil recovery(CO_(2)-EOR)is an economically viable carbon capture,utilization,and storage(CCUS)technique that is widely practiced and greatly contributes to the achievement of carbon-neutral cities.However,studies on CO_(2)-EOR source-sink matching involving different emission sources,different carbon capture rates,and stepwise CO_(2)pipeline construction are scarce.Considering four types of carbon sources,including coal-fired power,iron and steel,cement,and chemical plants,with different CO_(2)capture rates(85%,90%,95%,and 100%,respectively),and using a five-phased construction plan with a 25-year build-up period,we developed a method for quantifying carbon emissions from different sources,calculating the effective storage of carbon in CO_(2)-EOR and optimizing CO_(2)-EOR source-sink matching to reduce project costs.Using the Subei Basin in the Jiangsu Province,China,as a case study,we calculated the theoretical CO_(2)-EOR storage to be 1.7408×10^(8)t and the effective CO_(2)-EOR storage to be 0.435×10^(8)t.We analyzed the completion rate of transportation pipelines,the number of connected carbon sources,and the mass of CO_(2)stored,as well as the cost-effectiveness and sensitivity.Implementation of CO_(2)-EOR effectively reduced the total cost of source-sink matching in the five-stage 25-year construction approach.The reduction of CO_(2)capture rates had no effect on the value of oil repelling.The capture cost significantly affected the total cost of source-sink matching,and the impacts of the carbon sources on the total cost were in the order coal-fired power>iron and steel>cement>chemical plants.This study provides an innovative tool for evaluating the CO_(2)storage potential of CO_(2)-EOR and provides an important framework for implementing CO_(2)-EOR and planning CCUS projects in the Subei Basin and similar regions.