A high-order fully actuated(HOFA)control method is developed for underactuated mechanical systems(UMSs)with model uncertainties and external disturbances.First,a model transformation is made from the original to a pse...A high-order fully actuated(HOFA)control method is developed for underactuated mechanical systems(UMSs)with model uncertainties and external disturbances.First,a model transformation is made from the original to a pseudo strict-feedback form,and an HOFA model is established by using the method of variable elimination.Then,a group of high-order extended state observers(ESOs)are designed to deal with model uncertainties and external disturbances.The HOFA model is further classified and decomposed to achieve output constraints within a finite time range,and a barrier function is designed by combining with a shift function.Additionally,an ESO-based HOFA tracking control strategy for UMS is proposed.Finally,a manipulator model is used to verify the effectiveness of the proposed control strategy.展开更多
In this paper, first-order and second-order sliding mode controllers for underactuated manipulators are proposed. Sliding mode control(SMC) is considered as an effective tool in different studies for control systems. ...In this paper, first-order and second-order sliding mode controllers for underactuated manipulators are proposed. Sliding mode control(SMC) is considered as an effective tool in different studies for control systems. However, the associated chattering phenomenon degrades the system performance. To overcome this phenomenon and track a desired trajectory, a twisting, a supertwisting and a modified super-twisting algorithms are presented respectively. The stability analysis is performed using a Lyapunov function for the proposed controllers. Further, the four different controllers are compared with each other. As an illustration, an example of an inverted pendulum is considered. Simulation results are given to demonstrate the effectiveness of the proposed approaches.展开更多
Underactuated mechanical system has less independent inputs than the degrees of freedom(DOF) of the mechanism. The energy efficiency of this class of mechanical systems is an essential problem in practice. On the ba...Underactuated mechanical system has less independent inputs than the degrees of freedom(DOF) of the mechanism. The energy efficiency of this class of mechanical systems is an essential problem in practice. On the basis of the sufficient and necessary condition that concludes a single input nonlinear system is differentially flat, it is shown that the flat output of the single input underactuated mechanical system can be obtained by finding a smooth output function such that the relative degree of the system equals to the dimension of the state space. If the flat output of the underactuated system can be solved explicitly, and by constructing a smooth curve with satisfying given boundary conditions in fiat output space, an energy efficiency optimization method is proposed for the motion planning of the differentially flat underactuated mechanical systems. The inertia wheel pendulum is used to verify the proposed optimization method, and some numerical simulations show that the presented optimal motion planning method can efficaciously reduce the energy cost for given control tasks.展开更多
In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to im...In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
Offshore cranes are widely applied to transfer largescale cargoes and it is challenging to develop effective control for them with sea wave disturbances. However, most existing controllers can only yield ultimate unif...Offshore cranes are widely applied to transfer largescale cargoes and it is challenging to develop effective control for them with sea wave disturbances. However, most existing controllers can only yield ultimate uniform boundedness or asymptotical stability results for the system's equilibrium point, and the state variables' convergence time cannot be theoretically guaranteed. To address these problems, a nonlinear sliding mode-based controller is suggested to accurately drive the boom/rope to their desired positions. Simultaneously, payload swing can be eliminated rapidly with sea waves. As we know, this paper firstly presents a controller by introducing error-related bounded functions into a sliding surface, which can realize boom/rope positioning within a finite time, and both controller design and analysis based on the nonlinear dynamics are implemented without any linearization manipulations. Moreover, the stability analysis is theoretically ensured with the Lyapunov method. Finally, we employ some experiments to validate the effectiveness of the proposed controller.展开更多
The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unsta...The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.展开更多
Presents a control strategy for underactuated mechanical system: the acrobot example, which combines fuzzy control and linear quadratic control. The fuzzy controller designed for the upswing ensures that the energy of...Presents a control strategy for underactuated mechanical system: the acrobot example, which combines fuzzy control and linear quadratic control. The fuzzy controller designed for the upswing ensures that the energy of the acrobot increases with each swing. After the acrobot enters a neighborhood of the unstable straight up equilibrium position, a linear quadratic regulator is designed to balance it.展开更多
This paper describes an intelligent integrated control of an acrobot, which is an underactuated mechanical system with second-order nonholonomic constraints. The control combines a model-free fuzzy control, a fuzzy sl...This paper describes an intelligent integrated control of an acrobot, which is an underactuated mechanical system with second-order nonholonomic constraints. The control combines a model-free fuzzy control, a fuzzy sliding-mode control and a model-based fuzzy control. The model-free fuzzy controller designed for the upswing ensures that the energy of the acrobot increases with each swing. Then the fuzzy sliding-mode controller is employed to control the movement that the acrobot enters the balance area from the swing-up area. The model-based fuzzy controller, which is based on a Takagi-Sugeno fuzzy model, is used to balance the acrobot. The stability of the fuzzy control system for balance control is guaranteed by a common symmetric positive matrix, which satisfies linear matrix inequalities.展开更多
Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a ...Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.展开更多
The stiffness information of the grasped object at the initial contact stage can be effectively used to adjust the grasping force of the prosthetic hand,thereby preventing damage to the object.However,the object’s de...The stiffness information of the grasped object at the initial contact stage can be effectively used to adjust the grasping force of the prosthetic hand,thereby preventing damage to the object.However,the object’s deformation and contact force are often minimal during the initial stage and not easily obtained directly.Additionally,stiffness estimation methods for prosthetic hands often require contact sensors,which can easily lead to poor contact issues.To address the above issues,this paper proposes the model-based stiffness estimation of grasped objects for underactuated prosthetic hands without force sensors.First,the kinematic model is linearized at the contact points to achieve the estimation of the linkage angles in the underactuated prosthetic hand.Secondly,the motor parameters are estimated using the Kalman filter method,and the grasping force is obtained from the dynamic model of the underactuated prosthetic hand.Finally,the contact model of the prosthetic hand grasping an object is established,and an online stiffness estimation method based on the contact model for the grasped object is proposed using the iterative reweighted least squares method.Experimental results show that this method can estimate the stiffness of grasped objects within 250 ms without contact sensors.展开更多
To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed va...To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed variation and rule compliance as the evaluation functions and including the ship domain of dynamic/static navigation obstacles and the mechanical characteristics limitation as constraints.The effectiveness of the model for autonomous navigation of USV in the situation of multi-ship encounters and in the complex waters with both dynamic and static obstructions is verified by several groups of simulation work.The simulation results show that the proposed model can realize the autonomous navigation of the underactuated USV under the complex waters.展开更多
In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in th...In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in three dimensions and seeking to approximate the actuation forces through modeling of the aerodynamic coefficients and electric motor dynamics. The derived model is dynamically unstable, so a sequential nonlinear control strategy is implemented for the quad rotor. The control strategy includes exact feedback linearization technique, using the geometric methods of nonlinear control. The performance of the nonlinear control algorithm is evaluated using simulation and the results show the effectiveness of the proposed control strategy for the quad rotor rotorcraft near quasi-stationary flight.展开更多
In this paper, a new approach to stability analysis of nonlinear dynamics of an underactuated autonomous underwater vehicle(AUV) is presented. AUV is a highly nonlinear robotic system whose dynamic model includes co...In this paper, a new approach to stability analysis of nonlinear dynamics of an underactuated autonomous underwater vehicle(AUV) is presented. AUV is a highly nonlinear robotic system whose dynamic model includes coupled terms due to the hydrodynamic damping factors. It is difficult to analyze the stability of a nonlinear dynamical system through Routh's stability approach because it contains nonlinear dynamic parameters owing to hydrodynamic damping coefficients. It is also difficult to analyze the stability of AUVs using Lyapunov's criterion and LaSalle's invariance principle. In this paper, we proposed the extended-Routh's stability approach to verify the stability of such nonlinear dynamic systems. This extended-Routh's stability approach is much easier as compared to the other existing methods. Numerical simulations are presented to demonstrate the efficacy of the proposed stability verification of the nonlinear dynamic systems, e.g., an AUV system dynamics.展开更多
A three-dimensional stabilization problem for underactuated autonomous underwater vehicles(AUVs)is addressed in this paper.A novel coordinate transformation form consisting of state modifications and input transformat...A three-dimensional stabilization problem for underactuated autonomous underwater vehicles(AUVs)is addressed in this paper.A novel coordinate transformation form consisting of state modifications and input transformations is introduced such that the whole system is divided into two decoupled one-order subsystems.Some switching functions are presented to further decouple the underactuated dynamics and to produce persistently exciting(PE)signals for those underactuated states.Based on the aforementioned results,a quite simple control law is designed to achieve global three-dimensional asymptotic convergence of all states of underactuated AUVs.Comparative simulations are carried out to validate the effectiveness and performance of the proposed control scheme.展开更多
When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a high dexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into acc...When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a high dexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into account to fully accomplish the actuation tasks.This paper presents a novel humanoid robotic myocontrol hand (AR hand Ⅲ) which adopted an underac- tuated mechanism and a forearm myocontrol EMG method.The AR hand Ⅲ has five fingers and 15 joints,and actuated by three embedded motors.Underactuation can be found within each finger and between the rest three fingers (the middle finger,the ring finger and the little finger) when the hand is grasping objects.For the EMG control,two specific methods are proposed:the three-fingered hand gesture configuration of the AR hand Ⅲ and a pattern classification method of EMG signals based on a statistical learning algorithm-Support Vector Machine (SVM).Eighteen active hand gestures of a testee are recognized ef- fectively,which can be directly mapped into the motions of AR hand Ⅲ.An on-line EMG control scheme is established based on two different decision functions:one is for the discrimination between the idle and active modes,the other is for the recog- nition of the active modes.As a result,the AR hand Ⅲ can swiftly follow the gesture instructions of the testee with a time delay less than 100 ms.展开更多
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban...The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for u...The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.展开更多
Robot hands have been developing during the last few decades. There are many mechanical structures and analyti?cal methods for di erent hands. But many tough problems still limit robot hands to apply in homelike envir...Robot hands have been developing during the last few decades. There are many mechanical structures and analyti?cal methods for di erent hands. But many tough problems still limit robot hands to apply in homelike environment. The ability of grasping objects covering a large range of sizes and various shapes is fundamental for a home service robot to serve people better. In this paper, a new grasping mode based on a novel sucked?type underactuated(STU) hand is proposed. By combining the flexibility of soft material and the e ect of suction cups, the STU hand can grasp objects with a wide range of sizes, shapes and materials. Moreover, the new grasping mode is suitable for some situations where the force closure is failure. In this paper, we deduce the e ective range of sizes of objects which our hand using the new grasping mode can grasp. Thanks to the new grasping mode, the ratio of grasping size between the biggest object and the smallest is beyond 40, which makes it possible for our robot hand to grasp diverse objects in our daily life. For example, the STU hand can grasp a soccer(220 mm diameter, 420 g) and a fountain pen(9 mm diameter, 9 g). What’s more, we use the rigid body equilibrium conditions to analysis the force condition. Experiment evaluates the high load capacity, stability of the new grasping mode and displays the versatility of the STU hand. The STU hand has a wide range of applications especially in unstructured environment.展开更多
基金supported in part by the National Natural Science Foundation of China(62373208,62033003,62273105,U191140)Taishan Scholar Program of Shandong Province of China(tsqn202306218)+1 种基金the National Key Research and Development Program of China(2022YFB4703100)the National Natural Science Foundation of Shandong Province(ZR2024YQ032).
文摘A high-order fully actuated(HOFA)control method is developed for underactuated mechanical systems(UMSs)with model uncertainties and external disturbances.First,a model transformation is made from the original to a pseudo strict-feedback form,and an HOFA model is established by using the method of variable elimination.Then,a group of high-order extended state observers(ESOs)are designed to deal with model uncertainties and external disturbances.The HOFA model is further classified and decomposed to achieve output constraints within a finite time range,and a barrier function is designed by combining with a shift function.Additionally,an ESO-based HOFA tracking control strategy for UMS is proposed.Finally,a manipulator model is used to verify the effectiveness of the proposed control strategy.
文摘In this paper, first-order and second-order sliding mode controllers for underactuated manipulators are proposed. Sliding mode control(SMC) is considered as an effective tool in different studies for control systems. However, the associated chattering phenomenon degrades the system performance. To overcome this phenomenon and track a desired trajectory, a twisting, a supertwisting and a modified super-twisting algorithms are presented respectively. The stability analysis is performed using a Lyapunov function for the proposed controllers. Further, the four different controllers are compared with each other. As an illustration, an example of an inverted pendulum is considered. Simulation results are given to demonstrate the effectiveness of the proposed approaches.
基金supported by National Natural Science Foundation of China (Grant No. 50475177)Beijing Municipal Natural Science Foundation, China (Grant No. 3062009)Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality, China (Grant No. PHR200906107).
文摘Underactuated mechanical system has less independent inputs than the degrees of freedom(DOF) of the mechanism. The energy efficiency of this class of mechanical systems is an essential problem in practice. On the basis of the sufficient and necessary condition that concludes a single input nonlinear system is differentially flat, it is shown that the flat output of the single input underactuated mechanical system can be obtained by finding a smooth output function such that the relative degree of the system equals to the dimension of the state space. If the flat output of the underactuated system can be solved explicitly, and by constructing a smooth curve with satisfying given boundary conditions in fiat output space, an energy efficiency optimization method is proposed for the motion planning of the differentially flat underactuated mechanical systems. The inertia wheel pendulum is used to verify the proposed optimization method, and some numerical simulations show that the presented optimal motion planning method can efficaciously reduce the energy cost for given control tasks.
基金supported in part by the National High Technology Research and Development Program of China(863 Program)(2015AA042307)Shandong Provincial Scientific and Technological Development Foundation(2014GGX103038)+3 种基金Shandong Provincial Independent Innovation and Achievement Transformation Special Foundation(2015ZDXX0101E01)National Natural Science Fundation of China(NSFC)Joint Fund of Shandong Province(U1706228)the Fundamental Research Funds of Shandong University(2015JC027)
文摘In this paper, an adaptive proportional-derivative sliding mode control(APD-SMC) law, is proposed for 2D underactuated overhead crane systems. The proposed controller has the advantages of simple structure, easy to implement of PD control, strong robustness of SMC with respect to external disturbances and uncertain system parameters, and adaptation for unknown system dynamics associated with the feedforward parts. In the proposed APD-SMC law, the PD control part is used to stabilize the controlled system, the SMC part is used to compensate the external disturbances and system uncertainties,and the adaptive control part is utilized to estimate the unknown system parameters. The coupling behavior between the trolley movement and the payload swing is enhanced and, therefore, the transient performance of the proposed controller is improved.The Lyapunov techniques and the La Salle's invariance theorem are employed in to support the theoretical derivations. Experimental results are provided to validate the superior performance of the proposed control law.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金supported by the National Key Research and Development Program of China(2018YFB1309000)the National Natural Science Foundation of China(61873134,U1706228)+1 种基金the Young Elite Scientists Sponsorship Program by Tianjin(TJSQNTJ-2017-02)the Tianjin Research Innovation Project for Postgraduate Students(2019YJSB070)。
文摘Offshore cranes are widely applied to transfer largescale cargoes and it is challenging to develop effective control for them with sea wave disturbances. However, most existing controllers can only yield ultimate uniform boundedness or asymptotical stability results for the system's equilibrium point, and the state variables' convergence time cannot be theoretically guaranteed. To address these problems, a nonlinear sliding mode-based controller is suggested to accurately drive the boom/rope to their desired positions. Simultaneously, payload swing can be eliminated rapidly with sea waves. As we know, this paper firstly presents a controller by introducing error-related bounded functions into a sliding surface, which can realize boom/rope positioning within a finite time, and both controller design and analysis based on the nonlinear dynamics are implemented without any linearization manipulations. Moreover, the stability analysis is theoretically ensured with the Lyapunov method. Finally, we employ some experiments to validate the effectiveness of the proposed controller.
基金Projects(61074112,60674044) supported by the National Natural Science Foundation of China
文摘The robust control problem for a class of underactuated mechanical systems called acrobots is addressed. The goal is to drive the acrobots away from the straight-down position and balance them at the straight-up unstable equilibrium position in the presence of parametric uncertainties and external disturbance. First, in the swing-up area, it is shown that the time derivative of energy is independent of the parameter uncertainties, but exogenous disturbance may destroy the characteristic of increase in mechanical energy. So, a swing-up controller with compensator is designed to suppress the influence of the disturbance. Then, in the attractive area, the control problem is formulated into a H~ control framework by introducing a proper error signal, and a sufficient condition of the existence of Hoo state feedback control law based on linear matrix inequality (LMI) is proposed to guarantee the quadratic stability of the control system. Finally, the simulation results show that the proposed control approach can simultaneously handle a maximum ±10% parameter perturbation and a big disturbance simultaneously.
文摘Presents a control strategy for underactuated mechanical system: the acrobot example, which combines fuzzy control and linear quadratic control. The fuzzy controller designed for the upswing ensures that the energy of the acrobot increases with each swing. After the acrobot enters a neighborhood of the unstable straight up equilibrium position, a linear quadratic regulator is designed to balance it.
文摘This paper describes an intelligent integrated control of an acrobot, which is an underactuated mechanical system with second-order nonholonomic constraints. The control combines a model-free fuzzy control, a fuzzy sliding-mode control and a model-based fuzzy control. The model-free fuzzy controller designed for the upswing ensures that the energy of the acrobot increases with each swing. Then the fuzzy sliding-mode controller is employed to control the movement that the acrobot enters the balance area from the swing-up area. The model-based fuzzy controller, which is based on a Takagi-Sugeno fuzzy model, is used to balance the acrobot. The stability of the fuzzy control system for balance control is guaranteed by a common symmetric positive matrix, which satisfies linear matrix inequalities.
基金supported by the National Natural Science Foundation of China(62073094)the Fundamental Research Funds for the Central Universities(3072024GH0404)
文摘Dear Editor,This letter addresses the formation control problem for constrained underactuated autonomous underwater vehicles (AUVs). The feasibility condition of the virtual control law is eliminated by introducing a nonlinear state dependence function (NSDF) that transforms the state of each AUV in the formation.
基金supported by the National Natural Science Foundation of China under Grant 52275297.
文摘The stiffness information of the grasped object at the initial contact stage can be effectively used to adjust the grasping force of the prosthetic hand,thereby preventing damage to the object.However,the object’s deformation and contact force are often minimal during the initial stage and not easily obtained directly.Additionally,stiffness estimation methods for prosthetic hands often require contact sensors,which can easily lead to poor contact issues.To address the above issues,this paper proposes the model-based stiffness estimation of grasped objects for underactuated prosthetic hands without force sensors.First,the kinematic model is linearized at the contact points to achieve the estimation of the linkage angles in the underactuated prosthetic hand.Secondly,the motor parameters are estimated using the Kalman filter method,and the grasping force is obtained from the dynamic model of the underactuated prosthetic hand.Finally,the contact model of the prosthetic hand grasping an object is established,and an online stiffness estimation method based on the contact model for the grasped object is proposed using the iterative reweighted least squares method.Experimental results show that this method can estimate the stiffness of grasped objects within 250 ms without contact sensors.
基金the National Natural Science Foundation of China(No.51879119)the Key Projects of National Key Research and Development Program(No.2021YFB390150)+1 种基金the Natural Science Project of Fujian Province(Nos.2022J01323,2021J01822 and 2020J01660)the Fuzhou-Xiamen-Quanzhou Independent Innovation Region Cooperated Special Foundation(No.3502ZCQXT2021007)。
文摘To achieve the track following and collision avoidance of underactuated unmanned surface vehicle(USV),autonomous navigation model based on model predictive control is established by including the track offset,speed variation and rule compliance as the evaluation functions and including the ship domain of dynamic/static navigation obstacles and the mechanical characteristics limitation as constraints.The effectiveness of the model for autonomous navigation of USV in the situation of multi-ship encounters and in the complex waters with both dynamic and static obstructions is verified by several groups of simulation work.The simulation results show that the proposed model can realize the autonomous navigation of the underactuated USV under the complex waters.
文摘In this paper, a nonlinear dynamic MIMO model of a 6-DOF underactuated quad rotor rotorcraft is derived based on Newton-Euler formalism. The derivation comprises determining equations of motion of the quad rotor in three dimensions and seeking to approximate the actuation forces through modeling of the aerodynamic coefficients and electric motor dynamics. The derived model is dynamically unstable, so a sequential nonlinear control strategy is implemented for the quad rotor. The control strategy includes exact feedback linearization technique, using the geometric methods of nonlinear control. The performance of the nonlinear control algorithm is evaluated using simulation and the results show the effectiveness of the proposed control strategy for the quad rotor rotorcraft near quasi-stationary flight.
基金supported by Naval Research Board(NRB)Defense Research Development Organization(DRDO)Government of India(No.DNRD/05/4003/NRB/160)
文摘In this paper, a new approach to stability analysis of nonlinear dynamics of an underactuated autonomous underwater vehicle(AUV) is presented. AUV is a highly nonlinear robotic system whose dynamic model includes coupled terms due to the hydrodynamic damping factors. It is difficult to analyze the stability of a nonlinear dynamical system through Routh's stability approach because it contains nonlinear dynamic parameters owing to hydrodynamic damping coefficients. It is also difficult to analyze the stability of AUVs using Lyapunov's criterion and LaSalle's invariance principle. In this paper, we proposed the extended-Routh's stability approach to verify the stability of such nonlinear dynamic systems. This extended-Routh's stability approach is much easier as compared to the other existing methods. Numerical simulations are presented to demonstrate the efficacy of the proposed stability verification of the nonlinear dynamic systems, e.g., an AUV system dynamics.
文摘A three-dimensional stabilization problem for underactuated autonomous underwater vehicles(AUVs)is addressed in this paper.A novel coordinate transformation form consisting of state modifications and input transformations is introduced such that the whole system is divided into two decoupled one-order subsystems.Some switching functions are presented to further decouple the underactuated dynamics and to produce persistently exciting(PE)signals for those underactuated states.Based on the aforementioned results,a quite simple control law is designed to achieve global three-dimensional asymptotic convergence of all states of underactuated AUVs.Comparative simulations are carried out to validate the effectiveness and performance of the proposed control scheme.
基金supported by the National Natural Science Foundation (Grant No. 50435040 and 60675045)the National High Technology Research and Development Program (Grant No. 2006AA04Z228)the "111 Project" of China (No. B07018).
文摘When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a high dexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into account to fully accomplish the actuation tasks.This paper presents a novel humanoid robotic myocontrol hand (AR hand Ⅲ) which adopted an underac- tuated mechanism and a forearm myocontrol EMG method.The AR hand Ⅲ has five fingers and 15 joints,and actuated by three embedded motors.Underactuation can be found within each finger and between the rest three fingers (the middle finger,the ring finger and the little finger) when the hand is grasping objects.For the EMG control,two specific methods are proposed:the three-fingered hand gesture configuration of the AR hand Ⅲ and a pattern classification method of EMG signals based on a statistical learning algorithm-Support Vector Machine (SVM).Eighteen active hand gestures of a testee are recognized ef- fectively,which can be directly mapped into the motions of AR hand Ⅲ.An on-line EMG control scheme is established based on two different decision functions:one is for the discrimination between the idle and active modes,the other is for the recog- nition of the active modes.As a result,the AR hand Ⅲ can swiftly follow the gesture instructions of the testee with a time delay less than 100 ms.
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)Supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.
基金Project(2013M540271)supported by the Postdoctoral Science Foundation of ChinaProject(HEUCF1321003)support by the Basic Research Foundation of Central University,ChinaProject(51209050)supported by the National Natural Science Foundation of China
文摘The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.
基金National Natural Science Foundation of China(Grant Nos.U1613216,61573333)
文摘Robot hands have been developing during the last few decades. There are many mechanical structures and analyti?cal methods for di erent hands. But many tough problems still limit robot hands to apply in homelike environment. The ability of grasping objects covering a large range of sizes and various shapes is fundamental for a home service robot to serve people better. In this paper, a new grasping mode based on a novel sucked?type underactuated(STU) hand is proposed. By combining the flexibility of soft material and the e ect of suction cups, the STU hand can grasp objects with a wide range of sizes, shapes and materials. Moreover, the new grasping mode is suitable for some situations where the force closure is failure. In this paper, we deduce the e ective range of sizes of objects which our hand using the new grasping mode can grasp. Thanks to the new grasping mode, the ratio of grasping size between the biggest object and the smallest is beyond 40, which makes it possible for our robot hand to grasp diverse objects in our daily life. For example, the STU hand can grasp a soccer(220 mm diameter, 420 g) and a fountain pen(9 mm diameter, 9 g). What’s more, we use the rigid body equilibrium conditions to analysis the force condition. Experiment evaluates the high load capacity, stability of the new grasping mode and displays the versatility of the STU hand. The STU hand has a wide range of applications especially in unstructured environment.