Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do n...Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.展开更多
Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Fir...Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Firstly,under the framework of morphological undecimated wavelet decomposition(MUWD),multi-channel signals are decomposed.Approximate signals of all decomposition layers are selected by feature energy factor and fused according to the presented fusion rules.Furthermore,specific method for optimal selection of MUWDF parameters is presented to avoid subjective influences.Finally,the proposed algorithm is verified by simulation signals and pump vibration signals.展开更多
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand...To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.展开更多
Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possi...Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.展开更多
Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological cha...Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.展开更多
Different methods proposed so far for accurate classification of land cover types in polarimetric synthetic aperture radar (SAR) image are data specific and no general method is available. A novel hybrid framework f...Different methods proposed so far for accurate classification of land cover types in polarimetric synthetic aperture radar (SAR) image are data specific and no general method is available. A novel hybrid framework for this classification was developed in this work. A set of effective features derived from the coherence matrix of polarimetric SAR data was proposed. Constituents of the feature set are wavelet, texture, and nonlinear features. The proposed feature set has a strong discrimination power. A neural network was used as the classification engine in a unique way. By exploiting the speed of the conjugate gradient method and the convergence rate of the Levenberg-Marquardt method (near the optimal point), an overall speed up of the classification procedure was achieved. Principal component analysis (PCA) was used to shrink the dimension of the feature vector without sacrificing much of the classification accuracy. The proposed approach is compared with the maximum likelihood estimator (MLE) based on the complex Wishart distribution and the results show the superiority of the proposed method, with the average classification accuracy by the proposed method (95.4%) higher than that of the MLE (93.77%). Use of PCA to reduce the dimensionality of the feature vector helps reduce the memory requirements and computational cost, thereby enhancing the speed of the process.展开更多
基金the National Natural Science Foundation of China(No.62065001)the Yunnan Young and Middle-aged Academic and Technical Leaders Reserve Talent Project(No.202205AC160001)+1 种基金the Science and Technology Programs of Yunnan Provincial Science and Technology Department(No.202101BA070001-054)the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities Association(No.2019FH001(-066))。
文摘Imaging sonar devices generate sonar images by receiving echoes from objects,which are often accompanied by severe speckle noise,resulting in image distortion and information loss.Common optical denoising methods do not work well in removing speckle noise from sonar images and may even reduce their visual quality.To address this issue,a sonar image denoising method based on fuzzy clustering and the undecimated dual-tree complex wavelet transform is proposed.This method provides a perfect translation invariance and an improved directional selectivity during image decomposition,leading to richer representation of noise and edges in high frequency coefficients.Fuzzy clustering can separate noise from useful information according to the amplitude characteristics of speckle noise,preserving the latter and achieving the goal of noise removal.Additionally,the low frequency coefficients are smoothed using bilateral filtering to improve the visual quality of the image.To verify the effectiveness of the algorithm,multiple groups of ablation experiments were conducted,and speckle sonar images with different variances were evaluated and compared with existing speckle removal methods in the transform domain.The experimental results show that the proposed method can effectively improve image quality,especially in cases of severe noise,where it still achieves a good denoising performance.
基金supported by the National Natural Science Foundation of China(No.51275524)
文摘Since vibration signals of hydraulic pump are mostly nonlinear and traditional fusion algorithm cannot satisfyingly process them,a morphological undecimated wavelet decomposition fusion(MUWDF)algorithm is proposed.Firstly,under the framework of morphological undecimated wavelet decomposition(MUWD),multi-channel signals are decomposed.Approximate signals of all decomposition layers are selected by feature energy factor and fused according to the presented fusion rules.Furthermore,specific method for optimal selection of MUWDF parameters is presented to avoid subjective influences.Finally,the proposed algorithm is verified by simulation signals and pump vibration signals.
基金the National Natural Science Foundation of China(Grant No.11471004)the Key Research and Development Program of Shaanxi Province,China(Grant No.2018SF-251)。
文摘To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation.
文摘Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.
基金supported by the National Scientific Equipment Development Project,"Deep Resource Exploration Core Equipment Research and Development"(Grant No.ZDYZ2012-1)06 Subproject,"Metal Mine Earthquake Detection System"and 05 Subject,"System Integration Field Test and Processing Software Development"
文摘Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.
基金the National Important Fundamental Research Plan of China (No. 2001CB309401)the National Natural Science Foundation of China (No. 40271077)the Research Fund for the Doctoral Program of Higher Education of China
文摘Different methods proposed so far for accurate classification of land cover types in polarimetric synthetic aperture radar (SAR) image are data specific and no general method is available. A novel hybrid framework for this classification was developed in this work. A set of effective features derived from the coherence matrix of polarimetric SAR data was proposed. Constituents of the feature set are wavelet, texture, and nonlinear features. The proposed feature set has a strong discrimination power. A neural network was used as the classification engine in a unique way. By exploiting the speed of the conjugate gradient method and the convergence rate of the Levenberg-Marquardt method (near the optimal point), an overall speed up of the classification procedure was achieved. Principal component analysis (PCA) was used to shrink the dimension of the feature vector without sacrificing much of the classification accuracy. The proposed approach is compared with the maximum likelihood estimator (MLE) based on the complex Wishart distribution and the results show the superiority of the proposed method, with the average classification accuracy by the proposed method (95.4%) higher than that of the MLE (93.77%). Use of PCA to reduce the dimensionality of the feature vector helps reduce the memory requirements and computational cost, thereby enhancing the speed of the process.