By means of the frequency domain method and the inequality analysis, we discuss the unconditional stability problem for the hyperneutral type constant linear control system with delays, and obtain some precise suffici...By means of the frequency domain method and the inequality analysis, we discuss the unconditional stability problem for the hyperneutral type constant linear control system with delays, and obtain some precise sufficient, sufficient and necessary conditions.展开更多
In this paper, by means of the frequency domain method and the inequality analysis, unconditional stability problem for the hyperneutral type constant linear control system with delays are discussed, and some precise ...In this paper, by means of the frequency domain method and the inequality analysis, unconditional stability problem for the hyperneutral type constant linear control system with delays are discussed, and some precise sufficient, sufficient and necessary conditions are obtained.展开更多
Applying the frequency domain method and the inequality method, we discussed the unconditional stability problem of the multigroup multidelays neutral type linear constant continuous control system, and obtained some ...Applying the frequency domain method and the inequality method, we discussed the unconditional stability problem of the multigroup multidelays neutral type linear constant continuous control system, and obtained some sufficient conditions.展开更多
In this paper, the sufficient and necessary conditions of the unconditional stability, and the delay bound of the third-order neutral delay differential equation with real constant coefficients are given. The conditio...In this paper, the sufficient and necessary conditions of the unconditional stability, and the delay bound of the third-order neutral delay differential equation with real constant coefficients are given. The conditions are brief and practical algebraic criterions Furthermore, we get the delay bound.展开更多
For solving nonlinear parabolic equation on massive parallel computers, the construction of parallel difference schemes with simple design, high parallelism and unconditional stability and second order global accuracy...For solving nonlinear parabolic equation on massive parallel computers, the construction of parallel difference schemes with simple design, high parallelism and unconditional stability and second order global accuracy in space, has long been desired. In the present work, a new kind of general parallel difference schemes for the nonlinear parabolic system is proposed. The general parallel difference schemes include, among others, two new parallel schemes. In one of them, to obtain the interface values on the interface of sub-domains an explicit scheme of Jacobian type is employed, and then the fully implicit scheme is used in the sub-domains. Here, in the explicit scheme of Jacobian type, the values at the points being adjacent to the interface points are taken as the linear combination of values of previous two time layers at the adjoining points of the inner interface. For the construction of another new parallel difference scheme, the main procedure is as follows. Firstly the linear combination of values of previous two time layers at the interface points among the sub-domains is used as the (Dirichlet) boundary condition for solving the sub-domain problems. Then the values in the sub-domains are calculated by the fully implicit scheme. Finally the interface values are computed by the fully implicit scheme, and in fact these calculations of the last step are explicit since the values adjacent to the interface points have been obtained in the previous step. The existence, uniqueness, unconditional stability and the second order accuracy of the discrete vector solutions for the parallel difference schemes are proved. Numerical results are presented to examine the stability, accuracy and parallelism of the parallel schemes.展开更多
Proposes an explicit fully discrete three-level pseudo-spectral scheme with unconditional stability for the Cahn-Hilliard equation. Equations for pseudo-spectral scheme; Analysis of linear stability of critical points.
In this work,we construct an efficient invariant energy quadratization(IEQ)method of unconditional energy stability to solve the Cahn-Hilliard equation.The constructed numerical scheme is linear,second-order accuracy ...In this work,we construct an efficient invariant energy quadratization(IEQ)method of unconditional energy stability to solve the Cahn-Hilliard equation.The constructed numerical scheme is linear,second-order accuracy in time and unconditional energy stability.We carefully analyze the unique solvability,stability and error estimate of the numerical scheme.The results show that the constructed scheme satisfies unique solvability,unconditional energy stability and the second-order convergence in time direction.Through a large number of 2D and 3D numerical experiments,we further verify the convergence order,unconditional energy stability and effectiveness of the scheme.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
The feasibility of using a problem-dependent method to solve systems of second order ODEs is corroborated by an eigen-based theory and a methodology to develop such a numerical method is constructed.The key steps of t...The feasibility of using a problem-dependent method to solve systems of second order ODEs is corroborated by an eigen-based theory and a methodology to develop such a numerical method is constructed.The key steps of this methodology are to decouple a system of ODEs of second order into a set of uncoupled ODEs of second order;next,an eigen-dependent method is proposed to approximate the solution of each uncoupled ODE of second order.It is vital to transform all eigen-dependent methods to a problem-dependent method to bypass an Eigen analysis.The development of an eigen-dependent method plays a key role in this methodology so that slow eigenmodes can be accurately integrated while there is no instability or excessive amplitude growth in fast eigenmodes.This can explain why a problem-dependent method can simultaneously combine the explicitness of each step and A-stability.Consequently,huge computational efforts can be saved for solving nonlinear stiff problems.A new family of problem-dependent methods is developed in this work so that the feasibility of the proposed methodology can be affirmed.It has almost the same performance as that of the HHT-αmethod.However,it can save more than 99.5%of CPU demand in approximating a solution for a system of 1000 nonlinear second order ODEs.展开更多
The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical ...The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical nonlinear damping, including the special case of velocity power type damping with a bilinear restoring force model. Based on the energy approach, the stability of the AAM is proven for SDOF structures using the mathematical features of the velocity power function and for MDOF structures by applying the virtual displacement theorem. Finally, numerical examples are given to demonstrate the accuracy of the theoretical analysis.展开更多
An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear...An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear system.If the value of α is selected within [-0.5,0],then the algorithm is shown to be unconditionally stable.Next,the root locus method for a discrete dynamic system is applied to analyze the stability of a nonlinear system.The results show that the proposed method is conditionally stable for dynamic systems with stiffness hardening.To improve the stability of the proposed method,the structure stiffness is then identified and updated.Both numerical and pseudo-dynamic tests on a structure with the collision effect prove that the stiffness updating method can effectively improve stability.展开更多
Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic sy...Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.展开更多
In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary varia...In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary variable approaches.By using a new pressure correction method,the accuracy of the pressure has been greatly improved.Furthermore,one only needs to solve a series of fully decoupled linear equations with constant coefficients at each time step.In addition,we prove the unconditional energy stability of the schemes,rigorously.Finally,plenty of numerical simulations are carried out to verify the convergence rates,stability,and effectiveness of the proposed schemes numerically.展开更多
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
The ABE-I (Alternating Block Explicit-lmplicit) method for diffusion problem is extended to solve the variable coefficient problem and the unconditional stability of the ABE-I method is proved by the energy method.
In this work, an unconditionally stable, decoupled, variable time step scheme is presentedfor the incompressible Navier-Stokes equations. Based on a scalar auxiliary variablein exponential function, this fully discret...In this work, an unconditionally stable, decoupled, variable time step scheme is presentedfor the incompressible Navier-Stokes equations. Based on a scalar auxiliary variablein exponential function, this fully discrete scheme combines the backward Euler schemefor temporal discretization with variable time step and a mixed finite element method forspatial discretization, where the nonlinear term is treated explicitly. Moreover, withoutany restriction on the time step, stability of the proposed scheme is discussed. Besides,error estimate is provided. Finally, some numerical results are presented to illustrate theperformances of the considered numerical scheme.展开更多
The second-order backward differential formula(BDF2)and the scalar auxiliary variable(SAV)approach are applied to con‐struct the linearly energy stable numerical scheme with the variable time steps for the epitaxial ...The second-order backward differential formula(BDF2)and the scalar auxiliary variable(SAV)approach are applied to con‐struct the linearly energy stable numerical scheme with the variable time steps for the epitaxial thin film growth models.Under the stepratio condition 0<τ_(n)/τ_(n-1)<4.864,the modified energy dissipation law is proven at the discrete levels with regardless of time step size.Nu‐merical experiments are presented to demonstrate the accuracy and efficiency of the proposed numerical scheme.展开更多
A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a...A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a structure does not need to be considered. This is because this subfamily is unconditionally stable for any instantaneous stiffness softening system, linear elastic system and instantaneous stiffness hardening system that might occur in the pseudodynamic testing of a real structure. In addition, it also offers good accuracy when compared to a general second-order accurate method for both linear elastic and nonlinear systems.展开更多
The main aim of this paper is to analyze the numerical method based upon the spectral element technique for the numerical solution of the fractional advection-diffusion equa-tion.The time variable has been discretized...The main aim of this paper is to analyze the numerical method based upon the spectral element technique for the numerical solution of the fractional advection-diffusion equa-tion.The time variable has been discretized by a second-order finite difference procedure.The stability and the convergence of the semi-discrete formula have been proven.Then,the spatial variable of the main PDEs is approximated by the spectral element method.The convergence order of the fully discrete scheme is studied.The basis functions of the spectral element method are based upon a class of Legendre polynomials.The numerical experiments confirm the theoretical results.展开更多
基金Supported by the Natural Science Foundation of Hubei Province ( 2 0 0 0 A490 0 5 )
文摘By means of the frequency domain method and the inequality analysis, we discuss the unconditional stability problem for the hyperneutral type constant linear control system with delays, and obtain some precise sufficient, sufficient and necessary conditions.
基金Supported by the natural science Foundation of Hubei Provincec Education Committee
文摘In this paper, by means of the frequency domain method and the inequality analysis, unconditional stability problem for the hyperneutral type constant linear control system with delays are discussed, and some precise sufficient, sufficient and necessary conditions are obtained.
文摘Applying the frequency domain method and the inequality method, we discussed the unconditional stability problem of the multigroup multidelays neutral type linear constant continuous control system, and obtained some sufficient conditions.
文摘In this paper, the sufficient and necessary conditions of the unconditional stability, and the delay bound of the third-order neutral delay differential equation with real constant coefficients are given. The conditions are brief and practical algebraic criterions Furthermore, we get the delay bound.
基金The project is supported by the Special Funds for Major State Basic Research Projects 2005CB321703, the National Nature Science Foundation of China (No. 10476002, 60533020).
文摘For solving nonlinear parabolic equation on massive parallel computers, the construction of parallel difference schemes with simple design, high parallelism and unconditional stability and second order global accuracy in space, has long been desired. In the present work, a new kind of general parallel difference schemes for the nonlinear parabolic system is proposed. The general parallel difference schemes include, among others, two new parallel schemes. In one of them, to obtain the interface values on the interface of sub-domains an explicit scheme of Jacobian type is employed, and then the fully implicit scheme is used in the sub-domains. Here, in the explicit scheme of Jacobian type, the values at the points being adjacent to the interface points are taken as the linear combination of values of previous two time layers at the adjoining points of the inner interface. For the construction of another new parallel difference scheme, the main procedure is as follows. Firstly the linear combination of values of previous two time layers at the interface points among the sub-domains is used as the (Dirichlet) boundary condition for solving the sub-domain problems. Then the values in the sub-domains are calculated by the fully implicit scheme. Finally the interface values are computed by the fully implicit scheme, and in fact these calculations of the last step are explicit since the values adjacent to the interface points have been obtained in the previous step. The existence, uniqueness, unconditional stability and the second order accuracy of the discrete vector solutions for the parallel difference schemes are proved. Numerical results are presented to examine the stability, accuracy and parallelism of the parallel schemes.
文摘Proposes an explicit fully discrete three-level pseudo-spectral scheme with unconditional stability for the Cahn-Hilliard equation. Equations for pseudo-spectral scheme; Analysis of linear stability of critical points.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12261017,62062018)the Science and Technology Program of Guizhou Province(Nos.ZK[2022]006,ZK[2022]031,QKHZC[2023]372)+3 种基金Shanxi Province Natural Science Research(Grant No.202203021212249)the Scientific Research Foundation of Guizhou University of Finance and Economics(Grant No.2022KYYB08)the Innovation Exploration and Academic Emerging Project of Guizhou University of Finance and Economics(Grant No.2022XSXMB11)the Special/Youth Foundation of Taiyuan University of Technology(Grant No.2022QN101)。
文摘In this work,we construct an efficient invariant energy quadratization(IEQ)method of unconditional energy stability to solve the Cahn-Hilliard equation.The constructed numerical scheme is linear,second-order accuracy in time and unconditional energy stability.We carefully analyze the unique solvability,stability and error estimate of the numerical scheme.The results show that the constructed scheme satisfies unique solvability,unconditional energy stability and the second-order convergence in time direction.Through a large number of 2D and 3D numerical experiments,we further verify the convergence order,unconditional energy stability and effectiveness of the scheme.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
文摘The feasibility of using a problem-dependent method to solve systems of second order ODEs is corroborated by an eigen-based theory and a methodology to develop such a numerical method is constructed.The key steps of this methodology are to decouple a system of ODEs of second order into a set of uncoupled ODEs of second order;next,an eigen-dependent method is proposed to approximate the solution of each uncoupled ODE of second order.It is vital to transform all eigen-dependent methods to a problem-dependent method to bypass an Eigen analysis.The development of an eigen-dependent method plays a key role in this methodology so that slow eigenmodes can be accurately integrated while there is no instability or excessive amplitude growth in fast eigenmodes.This can explain why a problem-dependent method can simultaneously combine the explicitness of each step and A-stability.Consequently,huge computational efforts can be saved for solving nonlinear stiff problems.A new family of problem-dependent methods is developed in this work so that the feasibility of the proposed methodology can be affirmed.It has almost the same performance as that of the HHT-αmethod.However,it can save more than 99.5%of CPU demand in approximating a solution for a system of 1000 nonlinear second order ODEs.
基金National Natural Science Foundation of ChinaUnder Grant No. 50578047, 50338020 China Ministry ofEducation (Program for New Century Excellent Talents inUniversity) China Ministry of Science and Technology UnderGrant No.2003AA602150
文摘The energy approach is used to theoretically verify that the average acceleration method (AAM), which is unconditionally stable for linear dynamic systems, is also unconditionally stable for structures with typical nonlinear damping, including the special case of velocity power type damping with a bilinear restoring force model. Based on the energy approach, the stability of the AAM is proven for SDOF structures using the mathematical features of the velocity power function and for MDOF structures by applying the virtual displacement theorem. Finally, numerical examples are given to demonstrate the accuracy of the theoretical analysis.
基金Scientific Research Fund of the Institute of Engineering Mechanics,CEA under Grant Nos.2017A02,2016B09 and 2016A06the National Science-technology Support Plan Projects under Grant No.2015BAK17B02the National Natural Science Foundation of China under Grant Nos.51378478,51408565,51678538 and 51161120360
文摘An explicit unconditionally stable algorithm for hybrid tests,which is developed from the traditional HHT-α algorithm,is proposed.The unconditional stability is first proven by the spectral radius method for a linear system.If the value of α is selected within [-0.5,0],then the algorithm is shown to be unconditionally stable.Next,the root locus method for a discrete dynamic system is applied to analyze the stability of a nonlinear system.The results show that the proposed method is conditionally stable for dynamic systems with stiffness hardening.To improve the stability of the proposed method,the structure stiffness is then identified and updated.Both numerical and pseudo-dynamic tests on a structure with the collision effect prove that the stiffness updating method can effectively improve stability.
基金Science Council,Chinese Taipei,Under Grant No. NSC-96-2211-E-027-030
文摘Two explicit integration algorithms with unconditional stability for linear elastic systems have been successfully developed for pseudodynamic testing. Their numerical properties in the solution of a linear elastic system have been well explored and their applications to the pseudodynamic testing of a nonlinear system have been shown to be feasible. However, their numerical properties in the solution of a nonlinear system are not apparent. Therefore, the performance of both algorithms for use in the solution of a nonlinear system has been analytically evaluated after introducing an instantaneous degree of nonlinearity. The two algorithms have roughly the same accuracy for a small value of the product of the natural frequency and step size. Meanwhile, the first algorithm is unconditionally stable when the instantaneous degree of nonlinearity is less than or equal to 1, and it becomes conditionally stable when it is greater than 1. The second algorithm is conditionally stable as the instantaneous degree of nonlinearity is less than 1/9, and becomes unstable when it is greater than 1. It can have unconditional stability for the range between 1/9 and 1. Based on these evaluations, it was concluded that the first algorithm is superior to the second one. Also, both algorithms were found to require commensurate computational efforts, which are much less than needed for the Newmark explicit method in general structural dynamic problems.
基金Supported by the Research Project Supported of Shanxi Scholarship Council of China(No.2021-029)Shanxi Provincial International Cooperation Base and Platform Project(202104041101019)Shanxi Province Natural Science Research(202203021211129)。
文摘In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary variable approaches.By using a new pressure correction method,the accuracy of the pressure has been greatly improved.Furthermore,one only needs to solve a series of fully decoupled linear equations with constant coefficients at each time step.In addition,we prove the unconditional energy stability of the schemes,rigorously.Finally,plenty of numerical simulations are carried out to verify the convergence rates,stability,and effectiveness of the proposed schemes numerically.
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
基金Project supported by Special Funds for Major State Basic Research Projects (G1999032802) in China and NNSF (10076006) of China.
文摘The ABE-I (Alternating Block Explicit-lmplicit) method for diffusion problem is extended to solve the variable coefficient problem and the unconditional stability of the ABE-I method is proved by the energy method.
基金supported by the Natural Science Foundation of China(Grant No.12361077)by the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region(Grant No.2023TSYCCX0103)by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2023D14014).
文摘In this work, an unconditionally stable, decoupled, variable time step scheme is presentedfor the incompressible Navier-Stokes equations. Based on a scalar auxiliary variablein exponential function, this fully discrete scheme combines the backward Euler schemefor temporal discretization with variable time step and a mixed finite element method forspatial discretization, where the nonlinear term is treated explicitly. Moreover, withoutany restriction on the time step, stability of the proposed scheme is discussed. Besides,error estimate is provided. Finally, some numerical results are presented to illustrate theperformances of the considered numerical scheme.
文摘The second-order backward differential formula(BDF2)and the scalar auxiliary variable(SAV)approach are applied to con‐struct the linearly energy stable numerical scheme with the variable time steps for the epitaxial thin film growth models.Under the stepratio condition 0<τ_(n)/τ_(n-1)<4.864,the modified energy dissipation law is proven at the discrete levels with regardless of time step size.Nu‐merical experiments are presented to demonstrate the accuracy and efficiency of the proposed numerical scheme.
基金Science Council, Chinese Taipei Under Grant No. NSC-95-2221-E-027-099
文摘A new family of explicit pseudodynamic algorithms is proposed for general pseudodynamic testing. One particular subfamily seems very promising for use in general pseudodynamic testing since the stability problem for a structure does not need to be considered. This is because this subfamily is unconditionally stable for any instantaneous stiffness softening system, linear elastic system and instantaneous stiffness hardening system that might occur in the pseudodynamic testing of a real structure. In addition, it also offers good accuracy when compared to a general second-order accurate method for both linear elastic and nonlinear systems.
基金The authors are grateful to the two reviewers for carefully reading this paper and for their comments and suggestions which have highly improved the paper.
文摘The main aim of this paper is to analyze the numerical method based upon the spectral element technique for the numerical solution of the fractional advection-diffusion equa-tion.The time variable has been discretized by a second-order finite difference procedure.The stability and the convergence of the semi-discrete formula have been proven.Then,the spatial variable of the main PDEs is approximated by the spectral element method.The convergence order of the fully discrete scheme is studied.The basis functions of the spectral element method are based upon a class of Legendre polynomials.The numerical experiments confirm the theoretical results.