期刊文献+
共找到3,503篇文章
< 1 2 176 >
每页显示 20 50 100
Uncertainty and sensibility analysis of loss-of-forced-cooling accidents for 150-MWt molten salt reactors
1
作者 Kai Wang Chao-Qun Wang +2 位作者 Qun Yang Zhao-Zhong He Na-Xiu Wang 《Nuclear Science and Techniques》 2025年第6期228-239,共12页
Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise ... Molten salt reactors(MSRs)are a promising candidate for Generation IV reactor technologies,and the small modular molten salt reactor(SM-MSR),which utilizes low-enriched uranium and thorium fuels,is regarded as a wise development path to accelerate deployment time.Uncertainty and sensitivity analyses of accidents guide nuclear reactor design and safety analyses.Uncertainty analysis can ascertain the safety margin,and sensitivity analysis can reveal the correlation between accident consequences and input parameters.Loss of forced cooling(LOFC)represents an accident scenario of the SM-MSR,and the study of LOFC could offer useful information to improve physical thermohydraulic and structural designs.Therefore,this study investigates the uncertainty of LOFC consequences and the sensitivity of related parameters.The uncertainty of the LOFC consequences was analyzed using the Monte Carlo method,and multiple linear regression was employed to analyze the sensitivity of the input parameters.The uncertainty and sensitivity analyses showed that the maximum reactor outlet fuel salt temperature was 725.5℃,which is lower than the acceptable criterion,and five important parameters influencing LOFC consequences were identified. 展开更多
关键词 Molten salt reactor LOFC uncertainty analysis Sensibility analysis
在线阅读 下载PDF
Machine learning based damage state identification:A novel perspective on fragility analysis for nuclear power plants considering structural uncertainties
2
作者 Zheng Zhi Wang Yong +1 位作者 Pan Xiaolan Ji Duofa 《Earthquake Engineering and Engineering Vibration》 2025年第1期201-222,共22页
Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NP... Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NPP)system is an extremely important infrastructure and contains many structural uncertainties due to construction issues or structural deterioration during service.Simulation of structural uncertainties effects is a costly and time-consuming endeavor.A novel approach to SFA for the NPP considering structural uncertainties based on the damage state is proposed and examined.The results suggest that considering the structural uncertainties is essential in assessing the fragility of the NPP structure,and the impact of structural uncertainties tends to increase with the state of damage.Subsequently,machine learning(ML)is found to be superior in high-precision damage state identification of the NPP for reducing the time of nonlinear time-history analysis(NLTHA)and could be applied in the damage state-based SFA.Also,the impact of various sources of uncertainties is investigated through sensitivity analysis.The Sobol and Shapley additive explanations(SHAP)method can be complementary to each other and able to solve the problem of quantifying seismic and structural uncertainties simultaneously and the interaction effect of each parameter. 展开更多
关键词 seismic fragility analysis damage state structural uncertainties machine learning sensitivity analysis
在线阅读 下载PDF
A logistic-Lasso-regression-based seismic fragility analysis method for electrical equipment considering structural and seismic parameter uncertainty
3
作者 Cui Jiawei Che Ailan +1 位作者 Li Sheng Cheng Yongfeng 《Earthquake Engineering and Engineering Vibration》 2025年第1期169-186,共18页
Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee th... Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence. 展开更多
关键词 seismic fragility uncertainty logistic lasso regression ±1000 kV main transformer sensitivity analysis
在线阅读 下载PDF
Nonlinear frequency prediction and uncertainty analysis for fully clamped laminates by using a self-developed multi-scale neural networks system
4
作者 Yuan LIU Xuan ZHANG +6 位作者 Xibin CAO Jinsheng GUO Zhongxi SHAO Qingyang DENG Pengbo FU Yaodong HOU Haipeng CHEN 《Chinese Journal of Aeronautics》 2025年第9期225-250,共26页
To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate ... To improve design accuracy and reliability of structures,this study solves the uncertain natural frequencies with consideration for geometric nonlinearity and structural uncertainty.Frequencies of the laminated plate with all four edges clamped(CCCC)are derived based on Navier's method and Galerkin's method.The novelty of the current work is that the number of unknowns in the displacement field model of a CCCC plate with free midsurface(CCCC-2 plate)is only three compared with four or five in cases of other exposed methods.The present analytical method is proved to be accurate and reliable by comparing linear natural frequencies and nonlinear natural frequencies with other models available in the open literature.Furthermore,a novel method for analyzing effects of mean values and tolerance zones of uncertain structural parameters on random frequencies is proposed based on a self-developed Multiscale Feature Extraction and Fusion Network(MFEFN)system.Compared with a direct Monte Carlo Simulation(MCS),the MFEFNbased procedure significantly reduces the calculation burden with a guarantee of accuracy.Our research provides a method to calculate nonlinear natural frequencies under two boundary conditions and presentes a surrogate model to predict frequencies for accuracy analysis and optimization design. 展开更多
关键词 Geometric nonlinearity LAMINATES Multiscale feature extraction and fusion networks(MFEFN) Natural frequency uncertainty analysis
原文传递
Air target intention recognition and causal effect analysis combining uncertainty information reasoning and potential outcome framework 被引量:7
5
作者 Yu ZHANG Fanghui HUANG +2 位作者 Xinyang DENG Mingda LI Wen JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期287-299,共13页
Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent r... Recognizing target intent is crucial for making decisions on the battlefield.However,the imperfect and ambiguous character of battlefield situations challenges the validity and causation analysis of classical intent recognition techniques.Facing with the challenge,a target intention causal analysis paradigm is proposed by combining with an Intervention Retrieval(IR)model and a Hybrid Intention Recognition(HIR)model.The target data acquired by the sensors are modelled as Basic Probability Assignments(BPAs)based on evidence theory to create uncertain datasets.Then,the HIR model is utilized to recognize intent for a tested sample from uncertain datasets.Finally,the intervention operator under the evidence structure is utilized to perform attribute intervention on the tested sample.Data retrieval is performed in the sample database based on the IR model to generate the intention distribution of the pseudo-intervention samples to analyze the causal effects of individual sample attributes.The simulation results demonstrate that our framework successfully identifies the target intention under the evidence structure and goes further to analyze the causal impact of sample attributes on the target intention. 展开更多
关键词 Causal effect analysis Hybrid intention recognition Intervention retrieval Target intention uncertainty reasoning
原文传递
The prediction of projectile-target intersection for moving tank based on adaptive robust constraint-following control and interval uncertainty analysis 被引量:2
6
作者 Cong Li Xiuye Wang +2 位作者 Yuze Ma Fengjie Xu Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期351-363,共13页
To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method... To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error. 展开更多
关键词 Tank stability control Constraint-following Adaptive robust control uncertainty analysis Prediction of projectile-target intersection
在线阅读 下载PDF
Novel data-driven sparse polynomial chaos and analysis of covariance for aerodynamics of compressor cascades with dependent geometric uncertainties 被引量:1
7
作者 Zhengtao GUO Wuli CHU +1 位作者 Haoguang ZHANG Tianyuan JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期89-108,共20页
Polynomial Chaos Expansion(PCE)has gained significant popularity among engineers across various engineering disciplines for uncertainty analysis.However,traditional PCE suffers from two major drawbacks.First,the ortho... Polynomial Chaos Expansion(PCE)has gained significant popularity among engineers across various engineering disciplines for uncertainty analysis.However,traditional PCE suffers from two major drawbacks.First,the orthogonality of polynomial basis functions holds only for independent input variables,limiting the model’s ability to propagate uncertainty in dependent variables.Second,PCE encounters the"curse of dimensionality"due to the high computational cost of training the model with numerous polynomial coefficients.In practical manufacturing,compressor blades are subject to machining precision limitations,leading to deviations from their ideal geometric shapes.These deviations require a large number of geometric parameters to describe,and exhibit significant correlations.To efficiently quantify the impact of high-dimensional dependent geometric deviations on the aerodynamic performance of compressor blades,this paper firstly introduces a novel approach called Data-driven Sparse PCE(DSPCE).The proposed method addresses the aforementioned challenges by employing a decorrelation algorithm to directly create multivariate basis functions,accommodating both independent and dependent random variables.Furthermore,the method utilizes an iterative Diffeomorphic Modulation under Observable Response Preserving Homotopy regression algorithm to solve the unknown coefficients,achieving model sparsity while maintaining fitting accuracy.Then,the study investigates the simultaneous effects of seven dependent geometric deviations on the aerodynamics of a high subsonic compressor cascade by using the DSPCE method proposed and sensitivity analysis of covariance.The joint distribution of the dependent geometric deviations is determined using Quantile-Quantile plots and normal copula functions based on finite measurement data.The results demonstrate that the correlations between geometric deviations significantly impact the variance of aerodynamic performance and the flow field.Therefore,it is crucial to consider these correlations for accurately assessing the aerodynamic uncertainty. 展开更多
关键词 Data-driven sparse polyno-mial chaos analysis of covariance Dependent uncertainty Aerodynamic performance Compressor cascade
原文传递
Confined seepage analysis of saturated soils using fuzzy fields
8
作者 Nataly A.Manque Kok-Kwang Phoon +2 位作者 Yong Liu Marcos A.Valdebenito Matthias G.R.Faes 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1302-1320,共19页
Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope... Seepage refers to the flow of water through porous materials.This phenomenon has a crucial role in dam,slope,excavation,tunnel,and well design.Performing seepage analysis usually is a challenging task,as one must cope with the uncertainty associated with the parameters such as the hydraulic conductivity in the horizontal and vertical directions that drive this phenomenon.However,at the same time,the data on horizontal and vertical hydraulic conductivities are typically scarce in spatial resolution.In this context,so-called non-traditional approaches for uncertainty quantification(such as intervals and fuzzy variables)offer an interesting alternative to classical probabilistic methods,since they have been shown to be quite effective when limited information on the governing parameters of a phenomenon is available.Therefore,the main contribution of this study is the development of a framework for conducting seepage analysis in saturated soils,where uncertainty associated with hydraulic conductivity is characterized using fuzzy fields.This method to characterize uncertainty extends interval fields towards the domain of fuzzy numbers.In fact,it is illustrated that fuzzy fields are an effective tool for capturing uncertainties with a spatial component,since they allow one to account for available physical measurements.A case study in confined saturated soil shows that with the proposed framework,it is possible to quantify the uncertainty associated with seepage flow,exit gradient,and uplift force effectively. 展开更多
关键词 Fuzzy fields Interval fields Seepage analysis Hydraulic conductivity Spatial uncertainty
在线阅读 下载PDF
Time-dependent reliability analysis of aerospace electromagnetic relay considering hybrid uncertainties quantification of probabilistic and interval variables
9
作者 Fabin MEI Hao CHEN +2 位作者 Wenying YANG Xuerong YE Guofu ZHAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期99-115,共17页
Reliability is a crucial metric in aerospace engineering.The results of reliability assessments for components like aerospace electromagnetic relays directly impact the development and operational reliability of aeros... Reliability is a crucial metric in aerospace engineering.The results of reliability assessments for components like aerospace electromagnetic relays directly impact the development and operational reliability of aerospace engineering systems.Current methods for analyzing the reliability of aerospace electromagnetic relays have limitations,such as neglecting the combined effects of multiple uncertain factors,degradation of key component properties,and the influence of fluctuations in aerospace environments.Additionally,these methods often assume a single-type uncertainty in the manufacturing process,leading to significant deviations between the analysis results and actual measurement results.To address these issues,this study proposes an efficient timedependent reliability analysis method based on the HL-RF algorithm,considering a hybrid of probabilistic and interval uncertainty that accounts for degradation and environmental conditions.The proposed method is applied to the reliability analysis of actual aerospace electromagnetic relay products and compared with traditional methods,demonstrating significant advantages.The proposed method has been applied to the time-dependent reliability analysis of actual aerospace electromagnetic relay products under different environmental conditions.The analysis results exhibit an error margin within 5.12% compared to actual measurement results.Compared to analysis methods solely based on probabilistic uncertainty quantification or interval uncertainty quantification,this method reduces the analysis error by 52% and 67% respectively.When compared to two other state-of-the-art methods that integrate probabilistic and interval uncertainty quantification,the error reduction is 23%.These demonstrate the superiority of the proposed method and validates its effectiveness.The presented approach has the potential to be extended for reliability analysis in other aerospace electromechanical systems. 展开更多
关键词 Hybrid uncertainty analysis Time series Reliability analysis Degradation ELECTROMAGNETIC RELAY
原文传递
Surrogate model uncertainty quantification for active learning reliability analysis
10
作者 Yong PANG Shuai ZHANG +4 位作者 Pengwei LIANG Muchen WANG Zhuangzhuang GONG Xueguan SONG Ziyun KAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期55-70,共16页
Surrogate models offer an efficient approach to tackle the computationally intensive evaluation of performance functions in reliability analysis.Nevertheless,the approximations inherent in surrogate models necessitate... Surrogate models offer an efficient approach to tackle the computationally intensive evaluation of performance functions in reliability analysis.Nevertheless,the approximations inherent in surrogate models necessitate the consideration of surrogate model uncertainty in estimating failure probabilities.This paper proposes a new reliability analysis method in which the uncertainty from the Kriging surrogate model is quantified simultaneously.This method treats surrogate model uncertainty as an independent entity,characterizing the estimation error of failure probabilities.Building upon the probabilistic classification function,a failure probability uncertainty is proposed by integrating the difference between the traditional indicator function and the probabilistic classification function to quantify the impact of surrogate model uncertainty on failure probability estimation.Furthermore,the proposed uncertainty quantification method is applied to a newly designed reliability analysis approach termed SUQ-MCS,incorporating a proposed median approximation function for active learning.The proposed failure probability uncertainty serves as the stopping criterion of this framework.Through benchmarking,the effectiveness of the proposed uncertainty quantification method is validated.The empirical results present the competitive performance of the SUQ-MCS method relative to alternative approaches. 展开更多
关键词 Reliability analysis Kriging model uncertainty quantification Active learning Monte Carlo simulation
原文传递
Generalized nth-Order Perturbation Method Based on Loop Subdivision Surface Boundary Element Method for Three-Dimensional Broadband Structural Acoustic Uncertainty Analysis
11
作者 Ruijin Huo Qingxiang Pei +1 位作者 Xiaohui Yuan Yanming Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2053-2077,共25页
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill... In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples. 展开更多
关键词 Perturbation method loop subdivision surface isogeometric boundary element method uncertainty analysis
在线阅读 下载PDF
Uncertainty and sensitivity analysis of in-vessel phenomena under severe accident mitigation strategy based on ISAA-SAUP program
12
作者 Hao Yang Ji-Shen Li +2 位作者 Zhi-Ran Zhang Bin Zhang Jian-Qiang Shan 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期108-123,共16页
The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce... The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products. 展开更多
关键词 Gen-III PWR Severe accident mitigation Wilks’formula HYDROGEN Fission products uncertainty and sensitivity analysis
在线阅读 下载PDF
Dynamic analysis and experimental study of vibro-acoustic system with uncertainties at middle frequencies 被引量:2
13
作者 焦仁强 张建润 薛飞 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期166-170,共5页
To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA)... To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA) is proposed to analyze vibro-acoustics responses with uncertainties at middle frequencies. The mid-frequency dynamic response of the framework-plate structure with uncertainties is studied based on the hybrid FE-SEA method and the Monte Carlo(MC)simulation is performed so as to provide a benchmark comparison with the hybrid method. The energy response of the framework-plate structure matches well with the MC simulation results, which validates the effectiveness of the hybrid FE-SEA method considering both the complexity of the vibro-acoustic structure and the uncertainties in mid-frequency vibro-acousitc analysis. Based on the hybrid method, a vibroacoustic model of a construction machinery cab with random properties is established, and the excitations of the model are measured by experiments. The responses of the sound pressure level of the cab and the vibration power spectrum density of the front windscreen are calculated and compared with those of the experiment. At middle frequencies, the results have a good consistency with the tests and the prediction error is less than 3. 5dB. 展开更多
关键词 hybrid finite element method and statistic energy analysis(FE-SEA) method dynamic analysis vibroacoustic system UNCERTAINTIES mid-frequency range
在线阅读 下载PDF
Dynamic analysis of the tethered satellite system considering uncertain but bounded parameters 被引量:1
14
作者 Xin Jiang Zhengfeng Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期116-124,共9页
Dynamic analysis of the tethered satellite system(TSS)can provide a fundamental guideline to the evaluation of performance and robust design of the system examined.Uncertainties inherited with the parameters would ind... Dynamic analysis of the tethered satellite system(TSS)can provide a fundamental guideline to the evaluation of performance and robust design of the system examined.Uncertainties inherited with the parameters would induce unexpected variation of the response and deteriorate the reliability of the system.In this work,the effect of uncertain mass of the satellites on the deployment and retrieval dynamics of the TSS is investigated.First the interval mode is employed to take the variation of mass of satellite into account in the processes of deployment and retrieval.Then,the Chebyshev interval method is used to obtain the lower and upper response bounds of the TSS.To achieve a smooth and reliable implementation of deployment and retrieval,the nonlinear programming based on the Gauss pseudospectral method is adopted to obtain optimal trajectory of tether velocity.Numerical results show that the uncertainties of mass of the satellites have a distinct influence on the response of tether tension in the processes of deployment and retrieval. 展开更多
关键词 Dynamic analysis Interval uncertainty Tethered satellite Deployment and retrieval
在线阅读 下载PDF
Nonlinear interval analysis of rotor response with joints under uncertainties 被引量:10
15
作者 Yanhong MA Yongfeng WANG +1 位作者 Cun WANG Jie HONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第1期205-218,共14页
The dynamic influence of joints in aero-engine rotor systems is investigated in this paper.Firstly,the tangential stiffness and loss factor are obtained from an isolated lap joint setup with dynamic excitation experim... The dynamic influence of joints in aero-engine rotor systems is investigated in this paper.Firstly,the tangential stiffness and loss factor are obtained from an isolated lap joint setup with dynamic excitation experiments.Also,the influence of the normal contact pressure and the excitation level are examined,which revel the uncertainty in joints.Then,the updated Thin Layer Elements(TLEs)method with fitted parameters based on the experiments is established to simulate the dynamic properties of joints on the interface.The response of the rotor subjected to unbalance excitation is calculated,and the results illustrate the effectiveness of the proposed method.Meanwhile,using the Chebyshev inclusion function and a direct iteration algorithm,a nonlinear interval analysis method is established to consider the uncertainty of parameters in joints.The accuracy is proved by comparison with results obtained using the Monte-Carlo method.Combined with the updated TLEs,the nonlinear Chebyshev method is successfully applied on a finite model of a rotor.The study shows that substantial attention should be paid to the dynamical design for the joint in rotor systems,the dynamic properties of joints under complex loading and the corresponding interval analysis method need to be intensively studied. 展开更多
关键词 Aero-engine BOLTED JOINTS NONLINEAR interval analysis METHOD ROTOR dynamics UNCERTAINTIES Updated Thin Layer Elements(TLE)method
原文传递
Bayesian data analysis to quantify the uncertainty of intact rock strength 被引量:8
16
作者 Luis Fernando Contreras Edwin T.Brown Marc Ruest 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期11-31,共21页
One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insu... One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insufficient information on parameters or models. Probabilistic methods are normally used to quantify uncertainty. However, the frequentist approach commonly used for this purpose has some drawbacks.First, it lacks a formal framework for incorporating knowledge not represented by data. Second, it has limitations in providing a proper measure of the confidence of parameters inferred from data. The Bayesian approach offers a better framework for treating uncertainty in geotechnical design. The advantages of the Bayesian approach for uncertainty quantification are highlighted in this paper with the Bayesian regression analysis of laboratory test data to infer the intact rock strength parameters σand mused in the Hoek-Brown strength criterion. Two case examples are used to illustrate different aspects of the Bayesian methodology and to contrast the approach with a frequentist approach represented by the nonlinear least squares(NLLS) method. The paper discusses the use of a Student’s t-distribution versus a normal distribution to handle outliers, the consideration of absolute versus relative residuals, and the comparison of quality of fitting results based on standard errors and Bayes factors. Uncertainty quantification with confidence and prediction intervals of the frequentist approach is compared with that based on scatter plots and bands of fitted envelopes of the Bayesian approach. Finally, the Bayesian method is extended to consider two improvements of the fitting analysis. The first is the case in which the Hoek-Brown parameter, a, is treated as a variable to improve the fitting in the triaxial region. The second is the incorporation of the uncertainty in the estimation of the direct tensile strength from Brazilian test results within the overall evaluation of the intact rock strength. 展开更多
关键词 uncertainty Intact rock strength Bayesian analysis Hoek-Brown criterion
在线阅读 下载PDF
Uncertainty analysis of flow rate measurement for multiphase flow using CFD 被引量:9
17
作者 Joon-Hyung Kim Uk-Hee Jung +2 位作者 Sung Kim Joon-Yong Yoon Young-Seok Choi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期698-707,共10页
The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied... The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied in many industries.The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics.In particular,the greater the gas volume fraction(GVF),the more inhomogeneous the flow becomes.As a result,using a venturi meter to measure the rate of a flow that has a high GVF generates an error.In this study,the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD.To ensure the reliability of this study,the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data.As a result,the Grace model,which is a multiphase flow model established by an experiment with water and air,was confirmed to have the highest reliability.Finally,the characteristics of the internal flow Held about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter.A phase separation phenomenon occurred due to a density difference of water and air inside the venturi,and flow inhomogeneity happened according to the flow velocity difference of each phase.It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement. 展开更多
关键词 Multiphase flow Measurement Numerical analysis Venturi meter Gas volume fraction(GVF) uncertainty Multiphase flow model Grace model
在线阅读 下载PDF
Multi-parameters uncertainty analysis of logistic support process based on GERT 被引量:7
18
作者 Yong Wu Xing Pan +2 位作者 Rui Kang Congjiao He Liming Gong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期1011-1019,共9页
The uncertainty analysis is an effective sensitivity analysis method for system model analysis and optimization. However,the existing single-factor uncertainty analysis methods are not well used in the logistic suppor... The uncertainty analysis is an effective sensitivity analysis method for system model analysis and optimization. However,the existing single-factor uncertainty analysis methods are not well used in the logistic support systems with multiple decision-making factors. The multiple transfer parameters graphical evaluation and review technique(MTP-GERT) is used to model the logistic support process in consideration of two important factors, support activity time and support activity resources, which are two primary causes for the logistic support process uncertainty. On this basis,a global sensitivity analysis(GSA) method based on covariance is designed to analyze the logistic support process uncertainty. The aircraft support process is selected as a case application which illustrates the validity of the proposed method to analyze the support process uncertainty, and some feasible recommendations are proposed for aircraft support decision making on carrier. 展开更多
关键词 logistic support process uncertainty analysis graphi-cal evaluation and review technique(GERT) sensitivity analysis
在线阅读 下载PDF
Mixed uncertainty analysis of polycyclic aromatic hydrocarbon inhalation and risk assessment in ambient air of Beijing 被引量:7
19
作者 College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China GUO Huaicheng +3 位作者 LIU Yong HUANG Kai WANG Zhen ZHAN Xinye 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期505-512,共8页
This article presents the application of an integrated method that estimates the dispersion of polycyclic aromatic hydrocarbons (PAHs) in air, and assesses the human health risk associated with PAHs inhalation. An u... This article presents the application of an integrated method that estimates the dispersion of polycyclic aromatic hydrocarbons (PAHs) in air, and assesses the human health risk associated with PAHs inhalation. An uncertainty analysis method consisting of three components were applied in this study, where the three components include a bootstrapping method for analyzing the whole process associated uncertainty, an inhalation rate (IR) representation for evaluating the total PAH inhalation risk for human health, and a normally distributed absorption fraction (AF) ranging from 0% to 100% to represent the absorption capability of PAHs in human body. Using this method, an integrated process was employed to assess the health risk of the residents in Beijing, China, from inhaling PAHs in the air. The results indicate that the ambient air PAHs in Beijing is an important contributor to human health impairment, although over 68% of residents seem to be safe from daily PAH carcinogenic inhalation. In general, the accumulated daily inhalation amount is relatively higher for male and children at 10 years old of age than for female and children at 6 years old. In 1997, about 1.73% cancer sufferers in Beijing were more or less related to ambient air PAHs inhalation. At 95% confidence interval, approximately 272-309 individual cancer incidences can be attributed to PAHs pollution in the air. The probability of greater than 500 cancer occurrence is 15.3%. While the inhalation of ambient air PAHs was shown to be an important factor responsible for higher cancer occurrence in Beijing, while the contribution might not be the most significant one. 展开更多
关键词 polycyclic aromatic hydrocarbons (PAHs) uncertainty analysis human health risk
在线阅读 下载PDF
Uncertainty analysis and design optimization of hybrid rocket motor powered vehicle for suborbital flight 被引量:4
20
作者 Zhu Hao Tian Hui +1 位作者 Cai Guobiao Bao Weimin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第3期676-686,共11页
Abstract In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM) powered vehicle. The multidisciplinary design model of the rocket system ... Abstract In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM) powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity anal- ysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO) and uncertainty-based design optimization (UDO) are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS) and Kriging-based Taylor series approximation (KTSA), are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles. 展开更多
关键词 Design optimization Hybrid rocket motor Kriging model uncertainty analysis uncertainty-based designoptimization
原文传递
上一页 1 2 176 下一页 到第
使用帮助 返回顶部