期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Global adaptive output feedback control of nonlinear time-delay systems with measurement uncertainty
1
作者 Weiguo Cai Xianglei Jia Xinxu Ju 《Control Theory and Technology》 2025年第1期145-152,共8页
In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that globa... In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method. 展开更多
关键词 Output feedback Measurement uncertainty Nonlinear adaptive control Time delays
原文传递
Evaluation of Dosimetric Impact of Uncertainty of Measurement in Estimating External Radiotherapy Dose
2
作者 Collins Omondi Margaret Chege Samson Omondi 《Open Journal of Applied Sciences》 2024年第8期1985-1995,共11页
Cancer is a major societal public health and economic problem, responsible for one in every six deaths. Radiotherapy is the main technique of treatment for more than half of cancer patients. To achieve a successful ou... Cancer is a major societal public health and economic problem, responsible for one in every six deaths. Radiotherapy is the main technique of treatment for more than half of cancer patients. To achieve a successful outcome, the radiation dose must be delivered accurately and precisely to the tumor, within ± 5% accuracy. Smaller uncertainties are required for better treatment outcome. The objective of the study is to investigate the uncertainty of measurement of external radiotherapy beam using a standard ionization chamber under reference conditions. Clinical farmers type ionization chamber measurement was compared against the National Reference standard, by exposing it in a beam 60Co gamma source. The measurement set up was carried out according to IAEA TRS 498 protocol and uncertainty of measurement evaluated according to GUM TEDDOC-1585. Evaluation and analysis were done for the identified subjects of uncertainty contributors. The expanded uncertainty associated with 56 mGy/nC ND,W was found to be 0.9% corresponding to a confidence level of approximately 95% with a coverage factor of k = 2. The study established the impact of dosimetry uncertainty of measurement in estimating external radiotherapy dose. The investigation established that the largest contributor of uncertainty is the stability of the ionization chamber at 36%, followed by temperature at 22% and positioning of the chamber in the beam at 8%. The effect of pressure, electrometer, resolution, and reproducibility were found to be minimal to the overall uncertainty. The study indicate that there is no flawless measurement, as there are many prospective sources of variation. Measurement results have component of unreliability and should be regarded as best estimates of the true value. . 展开更多
关键词 Absorbed Dose to Water RADIOTHERAPY uncertainty of Measurement Secondary Standards Dosimetry Laboratory Ionizing Chamber
暂未订购
Measurement Uncertainty Analysis of the Rotary-scan Method for the Measurable Dimension of Cylindrical Workpieces
3
作者 Jiali Zhao Liang Zhang +2 位作者 Dan Wu Bobo Shen Qiaolin Li 《Instrumentation》 2024年第1期10-17,共8页
The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a dia... The measurement uncertainty analysis is carried out to investigate the measurable dimensions of cylindrical workpieces by the rotary-scan method in this paper.Due to the difficult alignment of the workpiece with a diameter of less than 3 mm by the rotary scan method,the measurement uncertainty of the cylindrical workpiece with a diameter of 3 mm and length of 50 mm which is measured by a roundness measuring machine,is evaluated according to GUM(Guide to the Expression of Uncertainty in Measurement)as an example.Since the uncertainty caused by the eccentricity of the measured workpiece is different with the dimension changing,the measurement uncertainty of cylindrical workpieces with other dimensions can be evaluated the same as the diameter of 3 mm but with different eccentricity.Measurement uncertainty caused by different eccentricities concerning the dimension of the measured cylindrical workpiece is set to simulate the evaluations.Compared to the target value of the measurement uncertainty of 0.1μm,the measurable dimensions of the cylindrical workpiece can be obtained.Experiments and analysis are presented to quantitatively evaluate the reliability of the rotary-scan method for the roundness measurement of cylindrical workpieces. 展开更多
关键词 measurement uncertainty rotary-scan cylindrical workpiece various dimensions
原文传递
Research into Uncertainty in Measurement of Seawater Chemical Oxygen Demand by Potassium Iodide-Alkaline Potassium Permanganate Determination Method 被引量:1
4
作者 张世强 郭长松 《Marine Science Bulletin》 CAS 2007年第2期18-24,共7页
Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distributio... Using the glucose and L-glutamic-acid to prepare the standard substance according to the ratio of 1:1, and the artificial seawater and the standard substance to prepare a series of standard solutions, the distribution pattern of uncertainty in measurement of seawater COD is obtained based on the measured results of the series of standard solutions by the potassium iodide-alkaline potassium permanganate determination method. The distribution pattern is as follows: Uncertainty in measurement is big and not constant at the high end, but small and constant at the low end. 展开更多
关键词 potassium iodide-alkaline potassium permanganate determination COD uncertainty in measurement
在线阅读 下载PDF
Application of Fuzzy Inference System in Gas Turbine Engine Fault Diagnosis Against Measurement Uncertainties 被引量:1
5
作者 Shuai Ma Yafeng Wu +1 位作者 Zheng Hua Linfeng Gou 《Chinese Journal of Mechanical Engineering》 2025年第1期62-83,共22页
Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel perf... Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties. 展开更多
关键词 Performance-based fault diagnosis Gas turbine engine Fuzzy inference system Measurement uncertainty Regression and classification
在线阅读 下载PDF
A fractal-based supremum and infimum complex belief entropy in complex evidence theory
6
作者 Tianren LIU Zewei YU +2 位作者 Fuyuan XIAO Yangyang ZHAO Masayoshi ARITSUGI 《Chinese Journal of Aeronautics》 2025年第6期77-87,共11页
Complex evidence theory is a generalized Dempster-Shafer evidence theory,which has the ability to express uncertain information.One of the key issues is the uncertainty measure of Complex Basic Belief Assignment(CBBA)... Complex evidence theory is a generalized Dempster-Shafer evidence theory,which has the ability to express uncertain information.One of the key issues is the uncertainty measure of Complex Basic Belief Assignment(CBBA).However,the research on the uncertainty measure of complex evidence theory is still an open issue.Therefore,in this paper,first,the Fractal-based Complex Belief(FCB)entropy as a generalization of Fractal-based Belief(FB)entropy,which has superiority in uncertainty measurement of CBBA,is proposed.Second,on the basis of FCB entropy,we propose Fractal-based Supremum Complex Belief(FSCB)entropy and Fractal-based Infimum Complex Belief(FICB)entropy,with FSCB entropy as the upper bound and FICB entropy as the lower bound.They are collectively called the proposed FCB entropy.Furthermore,we analyze the properties,physical interpretation and numerical examples to prove the rationality of the proposed method.Finally,a practical information fusion application is proposed to prove that the proposed FCB entropy can reasonably measure the uncertainty of CBBA.The results show that,the proposed FCB entropy can handle the uncertainty measure of CBBA,which can be a reasonable way for uncertainty measure in complex evidence theory. 展开更多
关键词 Complex evidence theory uncertainty measure FRACTAL Complex belief entropy Information fusion Classification
原文传递
Measurement Uncertainty Evaluation of Conicity Error Inspected on CMM 被引量:11
7
作者 WANG Dongxia SONG Aiguo +2 位作者 WEN Xiulan XU Youxiong QIAO Guifang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期212-218,共7页
The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performanc... The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performance. According to the new generation geometrical product specification(GPS), the error and its measurement uncertainty should be evaluated together. The mathematical model of the minimum zone conicity error is established and an improved immune evolutionary algorithm(IlEA) is proposed to search for the conicity error. In the IIEA, initial antibodies are firstly generated by using quasi-random sequences and two kinds of affinities are calculated. Then, each antibody clone is generated and they are self-adaptively mutated so as to maintain diversity. Similar antibody is suppressed and new random antibody is generated. Because the mathematical model of conicity error is strongly nonlinear and the input quantities are not independent, it is difficult to use Guide to the expression of uncertainty in the measurement(GUM) method to evaluate measurement uncertainty. Adaptive Monte Carlo method(AMCM) is proposed to estimate measurement uncertainty in which the number of Monte Carlo trials is selected adaptively and the quality of the numerical results is directly controlled. The cone parts was machined on lathe CK6140 and measured on Miracle NC 454 Coordinate Measuring Machine(CMM). The experiment results confirm that the proposed method not only can search for the approximate solution of the minimum zone conicity error(MZCE) rapidly and precisely, but also can evaluate measurement uncertainty and give control variables with an expected numerical tolerance. The conicity errors computed by the proposed method are 20%-40% less than those computed by NC454 CMM software and the evaluation accuracy improves significantly. 展开更多
关键词 minimum zone conicity error improved immune evolutionary algorithm measurement uncertainty adaptive Monte Carlo method
在线阅读 下载PDF
Measurement uncertainty in pharmaceutical analysis and its application 被引量:8
8
作者 Marcus Augusto Lyrio Traple Alessandro Morais Saviano +1 位作者 Fabiane Lacerda Francisco Felipe Rebello Lourencon 《Journal of Pharmaceutical Analysis》 CAS 2014年第1期1-5,共5页
The measurement uncertainty provides complete information about an analytical result. This is very important because several decisions of compliance or non-compliance are based on analytical results in pharmaceutical ... The measurement uncertainty provides complete information about an analytical result. This is very important because several decisions of compliance or non-compliance are based on analytical results in pharmaceutical industries. The aim of this work was to evaluate and discuss the estimation of uncertainty in pharmaceutical analysis. The uncertainty is a useful tool in the assessment of compliance or non-compliance of in-process and final pharmaceutical products as well as in the assessment of pharmaceutical equivalence and stability study of drug products. 展开更多
关键词 Measurement uncertainty Method validation Pharmaceutical analysis Quality control
暂未订购
Determination of Heavy Metals in Tobacco by ICP-MS and Analysis of Uncertainty 被引量:2
9
作者 Bo YANG Fengmin DUAN +1 位作者 Jinling DING Zhijuan BAO 《Asian Agricultural Research》 2016年第10期51-54,共4页
The research aims to set up the determination method of heavy metals in tobacco by ICP-MS and analyze its uncertainty. Microwave digest technique is used for decomposition of the tobacco samples. Bi,Sc,Ge and In are e... The research aims to set up the determination method of heavy metals in tobacco by ICP-MS and analyze its uncertainty. Microwave digest technique is used for decomposition of the tobacco samples. Bi,Sc,Ge and In are employed as internal standards to eliminate the interference of the matrix. A method is developed for simultaneous determination of Cr,Cu,As,Cd,Hg and Pb in tobacco from Yunnan Province by ICP-MS,and the measurement uncertainty is evaluated by metrological method. The test results indicate that in the content range of0- 1. 0 g / ml,the linearly dependent coefficient of six elements is 1. 0000,and the RSD achieves 1. 5%- 11%( n = 8). The elemental content in tobacco is as follows: Cr( 2. 92,0. 24) mg / kg,Cu( 3. 64,0. 24) mg / kg,As( 0. 467,0. 025) mg / kg,Cd( 3. 12,0. 15) mg / kg,Hg( 0. 035,0. 006) mg/kg,Pb( 4. 62,0. 36) mg/kg. The uncertainty of sample size,the constant volume of the sample solution can be neglected. It is concluded that the method is accurate,simple,sensitive and rapid. 展开更多
关键词 ICP-MS TOBACCO Heavy metals Microwave digestion uncertainty measurement
在线阅读 下载PDF
Fire risk evaluation research on fully mechanized coalface based on the uncertainty measure theory 被引量:1
10
作者 JIA Hai-lin YU Ming-gao Chang Xu-hua 《Journal of Coal Science & Engineering(China)》 2010年第2期157-162,共6页
A relatively perfect coalmine fire risk-evaluating and order-arranging model that includes sixteen influential factors was established according to the statistical information of the fully mechanized coalface ground o... A relatively perfect coalmine fire risk-evaluating and order-arranging model that includes sixteen influential factors was established according to the statistical information of the fully mechanized coalface ground on the uncertainty measure theory. Then the single-index measure function of sixteen influential factors and the calculation method of computing the index weight ground on entropy theory were respectively established. The value assignment of sixteen influential factors was carried out by the qualitative analysis and observational data, respectively, in succession. The sequence of fire danger class of four experimental coalfaces could be obtained by the computational aids of Matlab according to the confidence level criterion. Some conclusions that the fire danger class of the No.l, No.2 and No.3 coalface belongs to high criticality can be obtained. But the fire danger class of the No.4 coalface belongs to higher criticality. The fire danger class of the No.4 coalface is more than that of the No.2 coalface. The fire danger class of the No.2 coalface is more than that of the No.1 coalface. Finally, the fire danger class of the No.1 coalface is more than that of the No.3 coalface. 展开更多
关键词 fully mechanized coalface fire risk evaluation uncertainty measure single-index measure function sequence of fire danger class
在线阅读 下载PDF
Comparison of GUF and Monte Carlo methods to evaluate task-specific uncertainty in laser tracker measurement 被引量:1
11
作者 杨景照 李国喜 +2 位作者 吴宝中 龚京忠 王杰 《Journal of Central South University》 SCIE EI CAS 2014年第10期3793-3804,共12页
Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplemen... Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning. 展开更多
关键词 task-specific uncertainty laser tracker measurement uncertainty evaluation Monte Carlo method uncertainy framework(GUF)
在线阅读 下载PDF
Research on uncertainty in measurement assisted alignment in aircraft assembly 被引量:17
12
作者 Chen Zhehan Du Fuzhou Tang Xiaoqing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1568-1576,共9页
Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment.Positions and orientations(P&O)of aligned components are ... Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment.Positions and orientations(P&O)of aligned components are critical characters which assure geometrical positions and relationships of those components.Therefore,evaluating the P&O of a component is considered necessary and critical for ensuring accuracy in aircraft assembly.Uncertainty of position and orientation(U-P&O),as a part of the evaluating result of P&O,needs to be given for ensuring the integrity and credibility of the result;furthermore,U-P&O is necessary for error tracing and quality evaluating of measurement assisted aircraft assembly.However,current research mainly focuses on the process integration of measurement with assembly,and usually ignores the uncertainty of measured result and its influence on quality evaluation.This paper focuses on the expression,analysis,and application of U-P&O in measurement assisted alignment.The geometrical and algebraical connotations of U-P&O are presented.Then,an analytical algorithm for evaluating the multi-dimensional U-P&O is given,and the effect factors and characteristics of U-P&O are discussed.Finally,U-P&O is used to evaluate alignment in aircraft assembly for quality evaluating and improving.Cases are introduced with the methodology. 展开更多
关键词 Aircraft manufacturing Large size components alignment Measurement assisted assembly Quality assurance uncertainty analysis uncertainty of position and orientation
原文传递
Theoretical analysis and verification of uncertainty of measurement on a cantilever coordinate measuring machine
13
作者 ZHANG Hai-tao LIU Shu-gui +1 位作者 LI Xing-hua SU Zhi-kun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第4期314-320,共7页
A cantilever coordinate measuring machine(CCMM)is proposed according to the in-situ measurement requirement of workpieces with complex structures limited by the finite space of the5-axes computerized numerical control... A cantilever coordinate measuring machine(CCMM)is proposed according to the in-situ measurement requirement of workpieces with complex structures limited by the finite space of the5-axes computerized numerical control(CNC)processing site.Factors affecting uncertainty of measurement(UM)are classified and analyzed on the basis of uncertainty evaluation criteria,and the estimation technique of UM for measuring systems is presented.UM of the CCMM is estimated from the factors such as temperature,error motions as well as the mechanism deformations.Measurement results show that the actual measurement error is smaller than that of measurement requirement. 展开更多
关键词 cantilever coordinate measuring machine (CCMM) structure design computerized numerical control machine estimation of uncertainty of measurement
在线阅读 下载PDF
Adaptive cubature Kalman filter based on variational Bayesian inference under measurement uncertainty
14
作者 HU Zhentao JIA Haoqian GONG Delong 《High Technology Letters》 EI CAS 2022年第4期354-362,共9页
A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and rand... A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and random measurement losses.Firstly,the Inverse-Wishart(IW)distribution is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman filter framework.Secondly,the Bernoulli random variable is introduced as the judgement factor of the measurement losses,and the Beta distribution is selected as the conjugate prior distribution of measurement loss probability to ensure that the posterior distribution and prior distribution have the same function form.Finally,the joint posterior probability density function of the estimated variables is approximately decoupled by the variational Bayesian inference,and the fixed-point iteration approach is used to update the estimated variables.The simulation results show that the proposed VBACKF algorithm considers the comprehensive effects of system nonlinearity,time-varying measurement noise and unknown measurement loss probability,moreover,effectively improves the accuracy of target state estimation in complex scene. 展开更多
关键词 variational Bayesian inference cubature Kalman filter(CKF) measurement uncertainty Inverse-Wishart(IW)distribution
在线阅读 下载PDF
Evaluation of Uncertainty in the Determination of Ozone Concentration in the Air by Sodium Indigo Disulfonate Spectrophotometry
15
作者 Tingting ZHANG Xiujuan YU Shijing BIAN 《Meteorological and Environmental Research》 CAS 2022年第1期70-72,共3页
The uncertainty of the determination of ozone concentration in the air at a workplace by sodium indigo disulfonate spectrophotometry was evaluated.The results show that the expanded uncertainty of ozone concentration ... The uncertainty of the determination of ozone concentration in the air at a workplace by sodium indigo disulfonate spectrophotometry was evaluated.The results show that the expanded uncertainty of ozone concentration U was 0.016 mg/m^(3),and the main factor affecting the measurement uncertainty of ozone concentration was the uncertainty introduced during sample collection. 展开更多
关键词 Sodium indigo disulfonate SPECTROPHOTOMETRY Ozone concentration Measurement uncertainty
在线阅读 下载PDF
Calculation of Measurement Uncertainty for Stiffness Modulus of Asphalt Mixture
16
作者 Mieczystaw Slowik Mikolaj Bartkowiak 《Journal of Civil Engineering and Architecture》 2015年第11期1325-1333,共9页
Asphalt mixture is a highly heterogeneous material, which is one of the reasons for high measurements uncertainty when subjected to tests. The results of such tests are often unreliable, which may lead to making bad p... Asphalt mixture is a highly heterogeneous material, which is one of the reasons for high measurements uncertainty when subjected to tests. The results of such tests are often unreliable, which may lead to making bad professional judgments. They can be avoided by carrying out reliable analyses of measurement uncertainty adequate for the research methods used and conducted before the actual research is done. This paper presents the calculation of measurements uncertainty using as an example--the determination of the stiffness modulus of the asphalt mixture, which, in turn, was accomplished using the indirect tension method. The paper also shows the employment of the basic methods of statistical analysis, such as testing two mean values and conformity tests. Essential concepts in measurements uncertainty have been compiled and the determination of the stiffness module parameters are discussed. It has been demonstrated that the biggest source of error in the stiffness modulus measuring process is the displacement measure. The aim of the research was to find the measurement uncertainty for stiffness modulus by an indirect tensile test and the presentation of examples of the used statistical methods. 展开更多
关键词 Measurement uncertainty asphalt mixture pooled experimental standard deviation normality tests indirect tensile test stiffness modulus.
在线阅读 下载PDF
A Possibilistic Approach for Uncertainty Representation and Propagation in Similarity-Based Prognostic Health Management Solutions
17
作者 Loredana Cristaldi Alessandro Ferrero +1 位作者 Simona Salicone Giacomo Leone 《Open Journal of Statistics》 2020年第6期1020-1038,共19页
In this paper, a data-driven prognostic model capable to deal with different sources of uncertainty is proposed. The main novelty factor is the application of a mathematical framework, namely a Random Fuzzy Variable (... In this paper, a data-driven prognostic model capable to deal with different sources of uncertainty is proposed. The main novelty factor is the application of a mathematical framework, namely a Random Fuzzy Variable (RFV) approach, for the representation and propagation of the different uncertainty sources affecting </span><span style="font-family:Verdana;">Prognostic Health Management (PHM) applications: measurement, future and model uncertainty. </span><span style="font-family:Verdana;">In this way, it is possible to deal not only with measurement noise and model parameters uncertainty due to the stochastic nature of the degradation process, but also with systematic effects, such as systematic errors in the measurement process, incomplete knowledge of the degradation process, subjective belief about model parameters. Furthermore, the low analytical complexity of the employed prognostic model allows to easily propagate the measurement and parameters uncertainty into the RUL forecast, with no need of extensive Monte Carlo loops, so that low requirements in terms of computation power are needed. The model has been applied to two real application cases, showing high accuracy output, resulting in a potential</span></span><span style="font-family:Verdana;">ly</span><span style="font-family:Verdana;"> effective tool for predictive maintenance in different industrial sectors. 展开更多
关键词 DATA-DRIVEN Epistemic uncertainty Measurement uncertainty Future uncertainty Prognostics and Health Management Random Fuzzy Variable Remaining Useful Life SIMILARITY
在线阅读 下载PDF
Bernoulli particle flter with observer altitude for maritime radiation source tracking in the presence of measurement uncertainty
18
作者 Luo Xiaobo Fan Hongqi +1 位作者 Song Zhiyong Fu Qiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1459-1470,共12页
For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frs... For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frst problem is the poor observability of the radiation source.The second one is the measurement uncertainty which includes the uncertainty of the target appearing/disappearing and the detection uncertainty(false and missed detections).A novel approach is proposed in this paper for tracking maritime radiation source in the presence of measurement uncertainty.To solve the poor observability of maritime radiation source target,using the radiation source motion restriction,the observer altitude information is incorporated into the bearings-only tracking(BOT)method to obtain the unique target localization.Then the two uncertainties in the ECM environment are modeled by the random fnite set(RFS)theory and the Bernoulli fltering method with the observer altitude is adopted to solve the tracking problem of maritime radiation source in such context.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source,and also demonstrate the superiority of the method compared with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly those involving different duration of radiation source opening and switching-off,indicates that the method to solve our problem is robust and effective. 展开更多
关键词 Bernoulli flter Maritime radiation source Measurement uncertainty Passive tracking Random fnite set
原文传递
Evaluation of Uncertainty of Indicator Value Error Measurement Results for Fuel Dispenser
19
作者 GAO Xinchao 《外文科技期刊数据库(文摘版)工程技术》 2021年第5期368-370,共5页
As a kind of compulsory verification of the metering equipment, fuel tanker throughout the country, its accuracy is related to People's Daily life consumption. It is very important to introduce measurement uncerta... As a kind of compulsory verification of the metering equipment, fuel tanker throughout the country, its accuracy is related to People's Daily life consumption. It is very important to introduce measurement uncertainty into conformity assessment in order to better judge the indication error of the tanker and ensure the accuracy and fairness of the tanker. This paper analyzes the measurement uncertainty of the calibration of indicator value error of the tanker, determines the application basis of the measurement uncertainty, and summarizes the application of the measurement uncertainty in the calibration of indicator value error of the tanker according to the uncertainty requirements of ISO/IEC 17025:2017, so as to help the verifier to make more accurate qualification judgment and avoid risks. 展开更多
关键词 measurement uncertainty indicating error APPLICATION
原文传递
Development and evaluation of an online monitoring single-particle optical particle counter with polarization detection
20
作者 Weijie Yao Xiaole Pan +8 位作者 Yu Tian Hang Liu Yuting Zhang Shandong Lei Junbo Zhang Yinzhou Zhang LinWu Yele Sun Zifa Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期585-596,共12页
We developed a single-particle optical particle counter with polarization detection(SOPC)for the real-time measurement of the optical size and depolarization ratio(defined as the ratio of the vertical component to the... We developed a single-particle optical particle counter with polarization detection(SOPC)for the real-time measurement of the optical size and depolarization ratio(defined as the ratio of the vertical component to the parallel component of backward scattering)of atmospheric particles,the polarization ratio(DR)value can reflect the irregularity of the particles.The SOPC can detect aerosol particles with size larger than 500 nm and the maximum particle count rate reaches~1.8×10^(5)particles per liter.The SOPC uses a modulated polarization laser to measure the optical size of particles according to forward scattering signal and the DR value of the particles by backward S and P signal components.The sampling rate of the SOPC was 106#/(sec·channel),and all the raw data were processed online.The calibration curve was obtained by polystyrene latex spheres with sizes of 0.5-10μm,and the average relative deviation of measurement was 3.96% for sub 3μm particles.T-matrix method calculations showed that the DR value of backscatter light at 120°could describe the variations in the aspect ratio of particles in the above size range.We performed insitu observations for the evaluation of the SOPC,the mass concentration constructed by the SOPC showed good agreement with the PM_(2.5)measurements in a nearby state-controlled monitoring site.This instrument could provide useful data for source appointment and regulations against air pollution. 展开更多
关键词 Instrument development Single particle detection Measurement uncertainty Optical simulation Mass concentration
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部