This paper focuses on the passive control for a class of linear time delay system with norm bounded time varying parameter uncertainties by using a linear matrix inequality (LMI) approach. A sufficient condition under...This paper focuses on the passive control for a class of linear time delay system with norm bounded time varying parameter uncertainties by using a linear matrix inequality (LMI) approach. A sufficient condition under which the uncertain time delay system is quadratically stable and strictly passive for all admissible uncertainties was derived. It is shown that the solvability of problem of the robust passive controller design is implied by the feasibility of a linear matrix inequality.展开更多
To obtain a stable and proper linear filter to make the filtering error system robustly and strictly passive, the problem of full-order robust passive filtering for continuous-time polytopic uncertain time-delay syste...To obtain a stable and proper linear filter to make the filtering error system robustly and strictly passive, the problem of full-order robust passive filtering for continuous-time polytopic uncertain time-delay systems was investigated. A criterion for the passivity of time-delay systems was firstly provided in terms of linear matrix inequalities (LMI). Then an LMI sufficient condition for the existence of a robust filter was established and a design procedure was proposed for this type of systems. A numerical example demonstrated the feasibility of the filtering design procedure.展开更多
This paper deals with the problem of robust reliable H∞ control for a class of uncertain nonlinear systems with time-varying delays and actuator failures. The uncertainties in the system are norm-bounded and time-var...This paper deals with the problem of robust reliable H∞ control for a class of uncertain nonlinear systems with time-varying delays and actuator failures. The uncertainties in the system are norm-bounded and time-varying. Based on Lyapunov methods, a sufficient condition on quadratic stabilization independent of delay is obtained. With the help of LMIs (linear matrix inequalities) approaches, a linear state feedback controller is designed to quadratically stabilize the given systems with a H∞ performance constraint of disturbance attenuation for all admissible uncertainties and all actuator failures occurred within the prespecified subset. A numerical example is given to demonstrate the effect of the proposed design approach.展开更多
This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems posses...This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.展开更多
A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system und...A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.展开更多
A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source di...A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.展开更多
The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadra...The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.展开更多
This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain i...This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.展开更多
A robust reliability method for stability analysis and reliability-based stabilization of time-delay dynamic systems with uncertain but bounded parameters is presented by treating the uncertain parameters as interval ...A robust reliability method for stability analysis and reliability-based stabilization of time-delay dynamic systems with uncertain but bounded parameters is presented by treating the uncertain parameters as interval variables.The performance function used for robust reliability analysis is defined by a delayindependent stability criterion.The design of robust controllers is carried out by solving a reliability-based optimization problem in which the control cost satisfying design requirements is minimized.This kind of treatment makes it possible to achieve a balance between the reliability and control cost in the design of controller when uncertainties must be taken into account.By the method,a robust reliability measure of the degree of stability of a time-delay uncertain system can be provided,and the maximum robustness bounds of uncertain parameters such that the time-delay system to be stable can be obtained.All the procedures are based on the linear matrix inequality approach and therefore can be carried out conveniently.The effectiveness and feasibility of the proposed method are demonstrated with two practical examples.It is shown by numerical simulations and comparison that it is meaningful to take the robust reliability into account in the control design of uncertain systems.展开更多
In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissi...In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissibility for singular time-delay systems is proposed in terms of linear matrix inequality (LMI). Our new proposed criterion is less conservative and the numerical complexity is smaller than the existing ones. Based on this criterion, a state feedback controller is designed to ensure that the uncertain singular time-delay system is admissible. Finally, three numerical examples are employed to illustrate the effectiveness of the proposed method.展开更多
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli...In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is propo...The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is proposed. By constructing the Lyapunov function with the error terms, the infinite time domain "min-max" optimization problems are converted into convex optimization problems solving by the linear matrix inequality (LMI), and the sufficient conditions for the existence of this control are derived. It is proved that the robust stability of the closed-loop singular systems can be guaranteed by the initial feasible solutions of the optimization problems, and the regular and the impulse-free of the singular systems are also guaranteed. A simulation example illustrates the efficiency of this method.展开更多
To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function ...To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].展开更多
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions ...This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.展开更多
This work investigates adaptive control of a large class of uncertain time-delay chaotic systems (UTCSs) with unknown general perturbation terms bounded by a polynomial (unknown gains), Associated with the differe...This work investigates adaptive control of a large class of uncertain time-delay chaotic systems (UTCSs) with unknown general perturbation terms bounded by a polynomial (unknown gains), Associated with the different cases of known and unknowl system matrices, two corresponding adaptive controllers are proposed to stabilize unstable fixed points of the systems by means of Lyapunov stability theory and linear matrix inequafities (LMI) which can be solved easily by convex optimization algorithms, Two examples are used for examining the effectiveness of the proposed methods.展开更多
Some new results for stability of uncertain time-delay systems are derived and the stability degree is also discussed. Some previous results for stability and robust stability of time-delay systems are improved. Lastl...Some new results for stability of uncertain time-delay systems are derived and the stability degree is also discussed. Some previous results for stability and robust stability of time-delay systems are improved. Lastly, examples are included to illustrate our results.展开更多
Adaptive neural network (NN) dynamic surface control (DSC) is developed for a class of non-affine pure-feedback systems with unknown time-delay. The problems of "explosion of complexity" and circular constructio...Adaptive neural network (NN) dynamic surface control (DSC) is developed for a class of non-affine pure-feedback systems with unknown time-delay. The problems of "explosion of complexity" and circular construction of the practical controller in the traditional backstepping algorithm are avoided by using this controller design method. For removing the requirements on the sign of the derivative of function f~, Nussbaum control gain technique is used in control design procedure. The effects of unknown time-delays are eliminated by using appropriate Lyapunov-Krasovskii functionals. Proposed control scheme guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. Two simulation examples are presented to demonstrate the method.展开更多
This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, mul...This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and a suitable switching logic is incorporated to ensure the closed-loop system stability and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained in terms of linear matrix inequalities based on piecewise Lyapunov stability theory. On the other hand, adaptive laws for on-line updating of some of the controller parameters are also designed to compensate the effect of stuck failures. Finally, simulation results for reference [1] model show that the design is feasible and efficient.展开更多
This paper is concerned with the robust H ∞ control with exponent stability for a class of time delay uncertain systems. Attention is focused on the design of controllers such that the resulting closed loop system...This paper is concerned with the robust H ∞ control with exponent stability for a class of time delay uncertain systems. Attention is focused on the design of controllers such that the resulting closed loop system not only is exponentially stable but also satisfies, H ∞ disturbance attenuance via memoryless state feedback control. Sufficient conditions for feasibility are obtained in terms of LMIs. Moreover, optimization of LMI is considered such that the controller with low gain parameters is formulated.展开更多
文摘This paper focuses on the passive control for a class of linear time delay system with norm bounded time varying parameter uncertainties by using a linear matrix inequality (LMI) approach. A sufficient condition under which the uncertain time delay system is quadratically stable and strictly passive for all admissible uncertainties was derived. It is shown that the solvability of problem of the robust passive controller design is implied by the feasibility of a linear matrix inequality.
基金Sponsored by the Major Program of National Natural Science Foundation of China(Grant No.60710002)the Program for Changjiang Scholars and Innovative Research Team in University
文摘To obtain a stable and proper linear filter to make the filtering error system robustly and strictly passive, the problem of full-order robust passive filtering for continuous-time polytopic uncertain time-delay systems was investigated. A criterion for the passivity of time-delay systems was firstly provided in terms of linear matrix inequalities (LMI). Then an LMI sufficient condition for the existence of a robust filter was established and a design procedure was proposed for this type of systems. A numerical example demonstrated the feasibility of the filtering design procedure.
基金Sponsored by the Scientific Research Foundation of Harbin Institute of Technology (Grant No.HIT.2003.02)
文摘This paper deals with the problem of robust reliable H∞ control for a class of uncertain nonlinear systems with time-varying delays and actuator failures. The uncertainties in the system are norm-bounded and time-varying. Based on Lyapunov methods, a sufficient condition on quadratic stabilization independent of delay is obtained. With the help of LMIs (linear matrix inequalities) approaches, a linear state feedback controller is designed to quadratically stabilize the given systems with a H∞ performance constraint of disturbance attenuation for all admissible uncertainties and all actuator failures occurred within the prespecified subset. A numerical example is given to demonstrate the effect of the proposed design approach.
基金supported by the fund of Beijing Municipal Commission of Education(KM202210017001 and 22019821001)the Natural Science Foundation of Henan Province(222300420253).
文摘This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.
基金supported in part by the National Basic Research Program of China(973 Program)(61334)
文摘A linear matrix inequality (LMI)-based sliding surface design method for integral sliding mode control of uncertain time- delay systems with mismatching uncertainties is proposed. The uncertain time-delay system under consideration may have mis- matching norm bounded uncertainties in the state matrix as well as the input matrix, A sufficient condition for the existence of a sliding surface is given to guarantee asymptotic stability of the full order slJdJng mode dynamics. An LMI characterization of the slid- ing surface is given, together with an integral sliding mode control law guaranteeing the existence of a sliding mode from the initial time. Finally, a simulation is given to show the effectiveness of the proposed method.
基金co-supported by the National Key R&D Program of China(No.2023YFB4704400)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24F030012)the National Natural Science Foundation of China General Project(No.62373033)。
文摘A composite anti-disturbance predictive control strategy employing a Multi-dimensional Taylor Network(MTN)is presented for unmanned systems subject to time-delay and multi-source disturbances.First,the multi-source disturbances are addressed according to their specific characteristics as follows:(A)an MTN data-driven model,which is used for uncertainty description,is designed accompanied with the mechanism model to represent the unmanned systems;(B)an adaptive MTN filter is used to remove the influence of the internal disturbance;(C)an MTN disturbance observer is constructed to estimate and compensate for the influence of the external disturbance;(D)the Extended Kalman Filter(EKF)algorithm is utilized as the learning mechanism for MTNs.Second,to address the time-delay effect,a recursiveτstep-ahead MTN predictive model is designed utilizing recursive technology,aiming to mitigate the impact of time-delay,and the EKF algorithm is employed as its learning mechanism.Then,the MTN predictive control law is designed based on the quadratic performance index.By implementing the proposed composite controller to unmanned systems,simultaneous feedforward compensation and feedback suppression to the multi-source disturbances are conducted.Finally,the convergence of the MTN and the stability of the closed-loop system are established utilizing the Lyapunov theorem.Two exemplary applications of unmanned systems involving unmanned vehicle and rigid spacecraft are presented to validate the effectiveness of the proposed approach.
基金This project was supported by the National Natural Science Foundation of China (60474078)Science Foundation of High Education of Jiangsu of China (04KJD120016).
文摘The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.
基金supported in part by the Brazilian research agencies CNPq and CAPESby the Fundação Carlos Chagas Filho de AmparoàPesquisa do Estado do Rio de Janeiro,FAPERJ-Brasil(Project E-26/210.425/2024).
文摘This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.
文摘A robust reliability method for stability analysis and reliability-based stabilization of time-delay dynamic systems with uncertain but bounded parameters is presented by treating the uncertain parameters as interval variables.The performance function used for robust reliability analysis is defined by a delayindependent stability criterion.The design of robust controllers is carried out by solving a reliability-based optimization problem in which the control cost satisfying design requirements is minimized.This kind of treatment makes it possible to achieve a balance between the reliability and control cost in the design of controller when uncertainties must be taken into account.By the method,a robust reliability measure of the degree of stability of a time-delay uncertain system can be provided,and the maximum robustness bounds of uncertain parameters such that the time-delay system to be stable can be obtained.All the procedures are based on the linear matrix inequality approach and therefore can be carried out conveniently.The effectiveness and feasibility of the proposed method are demonstrated with two practical examples.It is shown by numerical simulations and comparison that it is meaningful to take the robust reliability into account in the control design of uncertain systems.
基金supported by National Natural Science Foundation of China (No.60904009,No.60974004)
文摘In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissibility for singular time-delay systems is proposed in terms of linear matrix inequality (LMI). Our new proposed criterion is less conservative and the numerical complexity is smaller than the existing ones. Based on this criterion, a state feedback controller is designed to ensure that the uncertain singular time-delay system is admissible. Finally, three numerical examples are employed to illustrate the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China (No.60674056)Outstanding Youth Funds of Liaoning Province (No.2005219001)Educational Department of Liaoning Province (No.2006R29,No.2007T80)
文摘In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
基金supported by the National Natural Science Foundation of China(60774016).
文摘The problem of observer-based robust predictive control is studied for the singular systems with norm-bounded uncertainties and time-delay, and the design method of robust predictive observer-based controller is proposed. By constructing the Lyapunov function with the error terms, the infinite time domain "min-max" optimization problems are converted into convex optimization problems solving by the linear matrix inequality (LMI), and the sufficient conditions for the existence of this control are derived. It is proved that the robust stability of the closed-loop singular systems can be guaranteed by the initial feasible solutions of the optimization problems, and the regular and the impulse-free of the singular systems are also guaranteed. A simulation example illustrates the efficiency of this method.
基金Project(61273095)supported by the National Natural Science Foundation of ChinaProject(135225)supported by the Academy of Finland
文摘To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].
基金This work was supported by the National Natural Science Foundation of China(No.60074007).
文摘This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.
文摘This work investigates adaptive control of a large class of uncertain time-delay chaotic systems (UTCSs) with unknown general perturbation terms bounded by a polynomial (unknown gains), Associated with the different cases of known and unknowl system matrices, two corresponding adaptive controllers are proposed to stabilize unstable fixed points of the systems by means of Lyapunov stability theory and linear matrix inequafities (LMI) which can be solved easily by convex optimization algorithms, Two examples are used for examining the effectiveness of the proposed methods.
文摘Some new results for stability of uncertain time-delay systems are derived and the stability degree is also discussed. Some previous results for stability and robust stability of time-delay systems are improved. Lastly, examples are included to illustrate our results.
基金partially supported by the Key Program of Henan Provincial Department of Education(No.13A470254)National Natural Science Foundation of China(Nos.61273137 and 51375145)+1 种基金the Science and Technology Innovative Foundation for Distinguished Young Scholar of Henan Province(No.144100510004)the Science and Technology Programme Foundation for the Innovative Talents of Henan Province University(No.13HASTIT038)
文摘Adaptive neural network (NN) dynamic surface control (DSC) is developed for a class of non-affine pure-feedback systems with unknown time-delay. The problems of "explosion of complexity" and circular construction of the practical controller in the traditional backstepping algorithm are avoided by using this controller design method. For removing the requirements on the sign of the derivative of function f~, Nussbaum control gain technique is used in control design procedure. The effects of unknown time-delays are eliminated by using appropriate Lyapunov-Krasovskii functionals. Proposed control scheme guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded. Two simulation examples are presented to demonstrate the method.
基金supported by the National Basic Research Program of China (No.2007CB714006)
文摘This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and a suitable switching logic is incorporated to ensure the closed-loop system stability and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained in terms of linear matrix inequalities based on piecewise Lyapunov stability theory. On the other hand, adaptive laws for on-line updating of some of the controller parameters are also designed to compensate the effect of stuck failures. Finally, simulation results for reference [1] model show that the design is feasible and efficient.
文摘This paper is concerned with the robust H ∞ control with exponent stability for a class of time delay uncertain systems. Attention is focused on the design of controllers such that the resulting closed loop system not only is exponentially stable but also satisfies, H ∞ disturbance attenuance via memoryless state feedback control. Sufficient conditions for feasibility are obtained in terms of LMIs. Moreover, optimization of LMI is considered such that the controller with low gain parameters is formulated.