This paper considers the problem of global stabilization by output feedback for a class of nonlinear systems with uncertain control coefficients and with unmeasured states dependent growth. Mainly due to the uncertain...This paper considers the problem of global stabilization by output feedback for a class of nonlinear systems with uncertain control coefficients and with unmeasured states dependent growth. Mainly due to the uncertain control coefficients, the problem has remained unsolved and its major difficulty stems from the inapplicability of the commonly used high-gain like observer. By introducing an appropriate state transformation and a thoroughly novel observer based on high-gain K-filters, the backstepping design approach is successfully proposed to the output-feedback controller for this class of systems. It is shown that the global asymptotic stability of the closed-loop system can be guaranteed by the appropriate choice of the control parameters.展开更多
基金the National Natural Science Foundation of China (Grant No.60674036)the Science and Technique Development Plan of Shandong Province (Grant No.2004GG4204014)+2 种基金the Program for New Century Excellent Talents in University of China (Grant No.NCET-07-0513)the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (Grant No.2007BS01010)the Key Science and Technique Foundation of Ministry of Education (Grant No.108079)
文摘This paper considers the problem of global stabilization by output feedback for a class of nonlinear systems with uncertain control coefficients and with unmeasured states dependent growth. Mainly due to the uncertain control coefficients, the problem has remained unsolved and its major difficulty stems from the inapplicability of the commonly used high-gain like observer. By introducing an appropriate state transformation and a thoroughly novel observer based on high-gain K-filters, the backstepping design approach is successfully proposed to the output-feedback controller for this class of systems. It is shown that the global asymptotic stability of the closed-loop system can be guaranteed by the appropriate choice of the control parameters.