This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equatio...This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equation, generalized omega-equation, and departure from fields obtained by potential vorticity (PV) inversion. The basic thoery, assumptions as well as implementation and limitations for each of the tools are all discussed. These tools are applied to high—resolution mesoscale model data to assess the role of unbalanced dynamics in the generation of a mesoscale gravity wave event over the East Coast of the United States. Comparison of these tools in this case study shows that these various methods agree to a large extent with each other though they differ in details. Key words Unbalanced flow - Geostrophic adjustment - Gravity waves - Nonlinear balance equation - Potential vorticity inversion - Omega equations - Rossby number This research was conducted under support from NSF grant ATM-9700626 of the United States. The numerical computations described herein were performed on the Cray T90 at the North Carolina Supercomputing Center and the Cray supercomputer at the NCAR Scientific Computing Division, which also provided the initialization fields for the MM5. Thanks are extended to Mark Stoelinga at University of Washington for the RIP post-processing package.展开更多
The Meiyu front heavy rain process in 1-3 June 2000 is numerically simulated in this paper, and results are then analyzed to show the effects of geostrophic balance collapse,unbalanced flow occurrence,low level jet (L...The Meiyu front heavy rain process in 1-3 June 2000 is numerically simulated in this paper, and results are then analyzed to show the effects of geostrophic balance collapse,unbalanced flow occurrence,low level jet (LLJ) development,and gravity waves genesis and propagation on the rainstorm.Analyses indicate that the sudden northwest movement of subtropical high may destruct the local geostrophic balance,leading to an increase in the local pressure gradient and the occurrence of ageostrophic flow,and meanwhile the adjustment of circulation starts to build a new balance.During the process,an LLJ and gravity waves appear correspondingly.The dispersion of unbalanced energy through the divergence/convergence of the geostrophic departure winds, promotes the propagation of strong wind cores along the LLJ,and the dispersion direction is influenced by the steering flow and the moisture concentration area.The development of LLJ is one of important conditions,which induces the heavy rain especially in the left front part of the jet where the convergence and shear of winds occur.It is also found that the genesis of disturbance, meso-vortex,and meso-convective system provides a favorable condition for the rainstorm.The above results are clearly illustrated by the high spatial and temporal resolution simulation data from a mesoscale numerical model.展开更多
This paper presents practical distribution system equipment models such as various distributed generators, voltage regulators, and loads for fast three phase unbalanced load flow calculation in distribution systems. T...This paper presents practical distribution system equipment models such as various distributed generators, voltage regulators, and loads for fast three phase unbalanced load flow calculation in distribution systems. The method can calculate voltage and current of distribution systems, in which distributed generators are introduced. The calculation time of the proposed method is about 40 times faster than that of the Newton-Raphson method. Moreover, an introduction effect evaluation tool for distributed generators using the proposed three phase unbalanced load flow calculation is presented. It provides various functions such as a power system network diagram creation function and a voltage profile chart display function. Therefore, the introduction effect evaluation of distributed generators in distribution systems can be evaluated quite easily.展开更多
Dynamic operating envelopes(DOEs),as key enablers to facilitate distributed energy resource(DER)integration,have attracted increasing attention in the past years.However,uncertainties,which may come from load forecast...Dynamic operating envelopes(DOEs),as key enablers to facilitate distributed energy resource(DER)integration,have attracted increasing attention in the past years.However,uncertainties,which may come from load forecasting errors or inaccurate network parameters,have been rarely discussed in DOE calculation,leading to compromised quality of the hosting capacity allocation strategy.This letter studies how to calculate DOEs that are immune to such uncertainties based on a linearised unbalanced three-phase optimal power flow(UTOPF)model.With uncertain parameters constrained by norm balls,formulations for calculating robust DOEs(RDOEs)are presented along with discussions on their tractability.Two cases,including a 2-bus illustrative network and a representative Australian network,are tested to demonstrate the effectiveness and efficiency of the proposed approach.展开更多
Voltage stability is a major concern in heavily loaded distribution networks.Careful determination of control parameters for loadability enhancement may maximize the utilization of distribution networks.In applicable ...Voltage stability is a major concern in heavily loaded distribution networks.Careful determination of control parameters for loadability enhancement may maximize the utilization of distribution networks.In applicable studies,most of the approaches optimize real/reactive power losses for the current operating conditions of the distribution network.Although,these types of approaches increase the stability margin,such an increase may not be sufficient.The most important factor in loadability enhancement is representation of future load scenarios in addressing the optimization problem.In this paper a look ahead approach is developed for loadability enhancement of an unbalanced distribution system.The determination of the critical loading point is conventionally done using continuation power flow,which is computationally very demanding,and also complex for implementation in unbalanced distribution networks.Therefore,a new,computationally very efficient voltage stability indicator is developed here for determination of the loadability limit.The proposed methodology is demonstrated on IEEE 4 bus and 25 bus unbalanced distribution systems with different transformer connections.展开更多
文摘This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equation, generalized omega-equation, and departure from fields obtained by potential vorticity (PV) inversion. The basic thoery, assumptions as well as implementation and limitations for each of the tools are all discussed. These tools are applied to high—resolution mesoscale model data to assess the role of unbalanced dynamics in the generation of a mesoscale gravity wave event over the East Coast of the United States. Comparison of these tools in this case study shows that these various methods agree to a large extent with each other though they differ in details. Key words Unbalanced flow - Geostrophic adjustment - Gravity waves - Nonlinear balance equation - Potential vorticity inversion - Omega equations - Rossby number This research was conducted under support from NSF grant ATM-9700626 of the United States. The numerical computations described herein were performed on the Cray T90 at the North Carolina Supercomputing Center and the Cray supercomputer at the NCAR Scientific Computing Division, which also provided the initialization fields for the MM5. Thanks are extended to Mark Stoelinga at University of Washington for the RIP post-processing package.
基金supported by the National Natural Science Foundation of China under Grant No.40175023
文摘The Meiyu front heavy rain process in 1-3 June 2000 is numerically simulated in this paper, and results are then analyzed to show the effects of geostrophic balance collapse,unbalanced flow occurrence,low level jet (LLJ) development,and gravity waves genesis and propagation on the rainstorm.Analyses indicate that the sudden northwest movement of subtropical high may destruct the local geostrophic balance,leading to an increase in the local pressure gradient and the occurrence of ageostrophic flow,and meanwhile the adjustment of circulation starts to build a new balance.During the process,an LLJ and gravity waves appear correspondingly.The dispersion of unbalanced energy through the divergence/convergence of the geostrophic departure winds, promotes the propagation of strong wind cores along the LLJ,and the dispersion direction is influenced by the steering flow and the moisture concentration area.The development of LLJ is one of important conditions,which induces the heavy rain especially in the left front part of the jet where the convergence and shear of winds occur.It is also found that the genesis of disturbance, meso-vortex,and meso-convective system provides a favorable condition for the rainstorm.The above results are clearly illustrated by the high spatial and temporal resolution simulation data from a mesoscale numerical model.
文摘This paper presents practical distribution system equipment models such as various distributed generators, voltage regulators, and loads for fast three phase unbalanced load flow calculation in distribution systems. The method can calculate voltage and current of distribution systems, in which distributed generators are introduced. The calculation time of the proposed method is about 40 times faster than that of the Newton-Raphson method. Moreover, an introduction effect evaluation tool for distributed generators using the proposed three phase unbalanced load flow calculation is presented. It provides various functions such as a power system network diagram creation function and a voltage profile chart display function. Therefore, the introduction effect evaluation of distributed generators in distribution systems can be evaluated quite easily.
基金supported by the CSIRO Strategic Project on Network Optimisation&Decarbonisation(No.OD-107890).
文摘Dynamic operating envelopes(DOEs),as key enablers to facilitate distributed energy resource(DER)integration,have attracted increasing attention in the past years.However,uncertainties,which may come from load forecasting errors or inaccurate network parameters,have been rarely discussed in DOE calculation,leading to compromised quality of the hosting capacity allocation strategy.This letter studies how to calculate DOEs that are immune to such uncertainties based on a linearised unbalanced three-phase optimal power flow(UTOPF)model.With uncertain parameters constrained by norm balls,formulations for calculating robust DOEs(RDOEs)are presented along with discussions on their tractability.Two cases,including a 2-bus illustrative network and a representative Australian network,are tested to demonstrate the effectiveness and efficiency of the proposed approach.
基金This work was supported by Department of Science and Technology(DST),SERB under the project no.SB/FTP/ETA-0183/2013.
文摘Voltage stability is a major concern in heavily loaded distribution networks.Careful determination of control parameters for loadability enhancement may maximize the utilization of distribution networks.In applicable studies,most of the approaches optimize real/reactive power losses for the current operating conditions of the distribution network.Although,these types of approaches increase the stability margin,such an increase may not be sufficient.The most important factor in loadability enhancement is representation of future load scenarios in addressing the optimization problem.In this paper a look ahead approach is developed for loadability enhancement of an unbalanced distribution system.The determination of the critical loading point is conventionally done using continuation power flow,which is computationally very demanding,and also complex for implementation in unbalanced distribution networks.Therefore,a new,computationally very efficient voltage stability indicator is developed here for determination of the loadability limit.The proposed methodology is demonstrated on IEEE 4 bus and 25 bus unbalanced distribution systems with different transformer connections.