Electronic 3D printing possesses a remarkable molding ability and convenience in integrated circuits,flexible wearables,and individual automobile requirements.However,traditional 3D printing technology still struggles...Electronic 3D printing possesses a remarkable molding ability and convenience in integrated circuits,flexible wearables,and individual automobile requirements.However,traditional 3D printing technology still struggles to meet the demands of high precision and high efficiency in the process of fabricating a curved surface circuit,particularly achieving precise silver circuit molding on irregular substrates.Here,a high-precision and muti-scaled conformal manufacturing method for silver circuits is presented through the digital light processing(DLP)of ultraviolet-curable silver paste(UV-SP)with adjustable photocuring properties,enabling the successful preparation of micro-scaled conductive structure on the sharply skewed hook face.The minimum modeling depth and width of the cured silver paste can be well controlled to 10 and 88µm,respectively.Compared with traditional printing technology,the printing efficiency of complex patterns has increased by over 70%.The printed silver circuit demonstrates an exceptionally high electrical conductivity,reaching as high as 1.16×10^(7) S/m.Additionally,the UV-SP exhibits significant manufacturing efficiency and superior molding resolution compared to conventional direct ink writing and inkjet printing techniques,thereby contributing to the attainment of high precision and efficiency of conformal and micro-molding manufacturing in sensors,communication antennas,and other electronic devices based on curved substrates.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51972079 and 52302062)the National Key Research and Development Program of China(Nos.2022YFB370630202 and 2022YFB3706305).
文摘Electronic 3D printing possesses a remarkable molding ability and convenience in integrated circuits,flexible wearables,and individual automobile requirements.However,traditional 3D printing technology still struggles to meet the demands of high precision and high efficiency in the process of fabricating a curved surface circuit,particularly achieving precise silver circuit molding on irregular substrates.Here,a high-precision and muti-scaled conformal manufacturing method for silver circuits is presented through the digital light processing(DLP)of ultraviolet-curable silver paste(UV-SP)with adjustable photocuring properties,enabling the successful preparation of micro-scaled conductive structure on the sharply skewed hook face.The minimum modeling depth and width of the cured silver paste can be well controlled to 10 and 88µm,respectively.Compared with traditional printing technology,the printing efficiency of complex patterns has increased by over 70%.The printed silver circuit demonstrates an exceptionally high electrical conductivity,reaching as high as 1.16×10^(7) S/m.Additionally,the UV-SP exhibits significant manufacturing efficiency and superior molding resolution compared to conventional direct ink writing and inkjet printing techniques,thereby contributing to the attainment of high precision and efficiency of conformal and micro-molding manufacturing in sensors,communication antennas,and other electronic devices based on curved substrates.