期刊文献+
共找到385篇文章
< 1 2 20 >
每页显示 20 50 100
An EfficientNet integrated ResNet deep network and explainable AI for breast lesion classification from ultrasound images
1
作者 Kiran Jabeen Muhammad Attique Khan +4 位作者 Ameer Hamza Hussain Mobarak Albarakati Shrooq Alsenan Usman Tariq Isaac Ofori 《CAAI Transactions on Intelligence Technology》 2025年第3期842-857,共16页
Breast cancer is one of the major causes of deaths in women.However,the early diagnosis is important for screening and control the mortality rate.Thus for the diagnosis of breast cancer at the early stage,a computer-a... Breast cancer is one of the major causes of deaths in women.However,the early diagnosis is important for screening and control the mortality rate.Thus for the diagnosis of breast cancer at the early stage,a computer-aided diagnosis system is highly required.Ultrasound is an important examination technique for breast cancer diagnosis due to its low cost.Recently,many learning-based techniques have been introduced to classify breast cancer using breast ultrasound imaging dataset(BUSI)datasets;however,the manual handling is not an easy process and time consuming.The authors propose an EfficientNet-integrated ResNet deep network and XAI-based framework for accurately classifying breast cancer(malignant and benign).In the initial step,data augmentation is performed to increase the number of training samples.For this purpose,three-pixel flip mathematical equations are introduced:horizontal,vertical,and 90°.Later,two pretrained deep learning models were employed,skipped some layers,and fine-tuned.Both fine-tuned models are later trained using a deep transfer learning process and extracted features from the deeper layer.Explainable artificial intelligence-based analysed the performance of trained models.After that,a new feature selection technique is proposed based on the cuckoo search algorithm called cuckoo search controlled standard error mean.This technique selects the best features and fuses using a new parallel zeropadding maximum correlated coefficient features.In the end,the selection algorithm is applied again to the fused feature vector and classified using machine learning algorithms.The experimental process of the proposed framework is conducted on a publicly available BUSI and obtained 98.4%and 98%accuracy in two different experiments.Comparing the proposed framework is also conducted with recent techniques and shows improved accuracy.In addition,the proposed framework was executed less than the original deep learning models. 展开更多
关键词 augmentation breast cancer classification deep learning OPTIMIZATION ultrasound images
在线阅读 下载PDF
UltraSegNet:A Hybrid Deep Learning Framework for Enhanced Breast Cancer Segmentation and Classification on Ultrasound Images
2
作者 Suhaila Abuowaida Hamza Abu Owida +3 位作者 Deema Mohammed Alsekait Nawaf Alshdaifat Diaa Salama Abd Elminaam Mohammad Alshinwan 《Computers, Materials & Continua》 2025年第5期3303-3333,共31页
Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image quality.This paper presents the UltraSegNet architecture that addres... Segmenting a breast ultrasound image is still challenging due to the presence of speckle noise,dependency on the operator,and the variation of image quality.This paper presents the UltraSegNet architecture that addresses these challenges through three key technical innovations:This work adds three things:(1)a changed ResNet-50 backbone with sequential 3×3 convolutions to keep fine anatomical details that are needed for finding lesion boundaries;(2)a computationally efficient regional attention mechanism that works on high-resolution features without using a transformer’s extra memory;and(3)an adaptive feature fusion strategy that changes local and global featuresbasedonhowthe image isbeing used.Extensive evaluation on two distinct datasets demonstrates UltraSegNet’s superior performance:On the BUSI dataset,it obtains a precision of 0.915,a recall of 0.908,and an F1 score of 0.911.In the UDAIT dataset,it achieves robust performance across the board,with a precision of 0.901 and recall of 0.894.Importantly,these improvements are achieved at clinically feasible computation times,taking 235 ms per image on standard GPU hardware.Notably,UltraSegNet does amazingly well on difficult small lesions(less than 10 mm),achieving a detection accuracy of 0.891.This is a huge improvement over traditional methods that have a hard time with small-scale features,as standard models can only achieve 0.63–0.71 accuracy.This improvement in small lesion detection is particularly crucial for early-stage breast cancer identification.Results from this work demonstrate that UltraSegNet can be practically deployable in clinical workflows to improve breast cancer screening accuracy. 展开更多
关键词 Breast cancer ultrasound image SEGMENTATION classification deep learning
在线阅读 下载PDF
Value analysis of ultrasound classification in disease judgment and treatment plan formulation of patients with adhesive intestinal obstruction
3
作者 Fang Wang Cui Liu Hua Wang 《World Journal of Gastrointestinal Surgery》 2025年第7期172-178,共7页
BACKGROUND Ultrasound classification can be used to determine the severity of adhesive intestinal obstruction and to guide the formulation of treatment plans.AIM To explore the value of ultrasound classification in di... BACKGROUND Ultrasound classification can be used to determine the severity of adhesive intestinal obstruction and to guide the formulation of treatment plans.AIM To explore the value of ultrasound classification in disease judgment and treatment plan formulation for patients with adhesive intestinal obstruction.METHODS The medical records of 120 patients with adhesive intestinal obstruction presenting at Taihe Hospital Affiliated with Hubei Medical College were retrospectively analyzed from January 2022 to January 2024 according to the severity of ultrasound images,divided into simple(mild),complex(moderate),and critical(severe),analyzing the imaging characteristics of patients with different ultrasound classifications,and developing the corresponding treatment plan according to the ultrasound typing results,that is,conservative treatment and surgical treatment,contrast the ultrasound signs of patients in the conservative vs surgical treatment groups,and the value of ultrasound classification in the treatment of adhesive ileus.RESULTS Among the 120 patients,P>0.05,compared with the general data(sex,age,body quality index,time to onset,and history of onset),the proportion of bowel distension and abdominal effusion(P>0.05),and the proportion of adhesion mass and cross-cross in the conservative treatment group,P<0.05.CONCLUSION Ultrasound typing can aid in the clinical evaluation of the severity of adhesive intestinal obstruction and provide an imaging reference for clinicians to develop targeted treatment plans. 展开更多
关键词 Adhesive ileus ultrasound classification Severity of disease Treatment plan CLINIC
暂未订购
超声BI-RADS分级结合超声弹性成像对乳腺结节良恶性的诊断价值
4
作者 王玉柱 秦晓瑞 +1 位作者 袁晓锋 海森 《临床医学工程》 2025年第6期589-592,共4页
目的探讨超声乳腺影像报告和数据系统(BI-RADS)分级结合超声弹性成像(UE)对乳腺结节良恶性的诊断价值。方法回顾性分析2023年1月至2024年12月郑州市第一人民医院收治的120例乳腺结节患者的临床资料,所有患者均接受常规超声及UE检查,根... 目的探讨超声乳腺影像报告和数据系统(BI-RADS)分级结合超声弹性成像(UE)对乳腺结节良恶性的诊断价值。方法回顾性分析2023年1月至2024年12月郑州市第一人民医院收治的120例乳腺结节患者的临床资料,所有患者均接受常规超声及UE检查,根据超声BI-RADS分级标准进行初步分类,同时记录UE相关定量参数。统计病理诊断结果,以病理诊断结果作为金标准,对比良恶性结节患者的BI-RADS分级结果、UE定量参数[硬度评分、弹性应变率比值(SR)];另对比BIRADS分级、BI-RADS分级+UE对乳腺结节良恶性的诊断结果及效能。结果病理诊断结果显示,120例乳腺结节患者中良性结节86例,恶性结节34例。恶性结节患者BI-RADS分级高于良性结节患者(P<0.05)。恶性结节患者硬度评分、SR高于良性结节患者(P<0.05)。BI-RADS分级诊断良性结节73例,恶性结节47例;BI-RADS分级+UE诊断良性结节83例,恶性结节37例。BI-RADS分级+UE诊断乳腺结节良恶性的灵敏度、特异度、阳性预测值、阴性预测值、准确率分别为97.06%、95.35%、89.19%、98.80%、95.83%,均高于BI-RADS分级诊断的79.41%、76.74%、57.45%、90.41%、77.50%(P<0.05)。结论超声BI-RADS分级结合UE可提高乳腺结节良恶性的诊断准确率,为临床早期诊断和治疗乳腺癌提供重要参考。 展开更多
关键词 乳腺结节 超声bi-rads分级 超声弹性成像
暂未订购
A Novel Approach to Breast Tumor Detection: Enhanced Speckle Reduction and Hybrid Classification in Ultrasound Imaging
5
作者 K.Umapathi S.Shobana +5 位作者 Anand Nayyar Judith Justin R.Vanithamani Miguel Villagómez Galindo Mushtaq Ahmad Ansari Hitesh Panchal 《Computers, Materials & Continua》 SCIE EI 2024年第5期1875-1901,共27页
Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effectivetreatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of ... Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effectivetreatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of breastcancer fromultrasound images. The primary challenge is accurately distinguishing between malignant and benigntumors, complicated by factors such as speckle noise, variable image quality, and the need for precise segmentationand classification. The main objective of the research paper is to develop an advanced methodology for breastultrasound image classification, focusing on speckle noise reduction, precise segmentation, feature extraction, andmachine learning-based classification. A unique approach is introduced that combines Enhanced Speckle ReducedAnisotropic Diffusion (SRAD) filters for speckle noise reduction, U-NET-based segmentation, Genetic Algorithm(GA)-based feature selection, and Random Forest and Bagging Tree classifiers, resulting in a novel and efficientmodel. To test and validate the hybrid model, rigorous experimentations were performed and results state thatthe proposed hybrid model achieved accuracy rate of 99.9%, outperforming other existing techniques, and alsosignificantly reducing computational time. This enhanced accuracy, along with improved sensitivity and specificity,makes the proposed hybrid model a valuable addition to CAD systems in breast cancer diagnosis, ultimatelyenhancing diagnostic accuracy in clinical applications. 展开更多
关键词 ultrasound images breast cancer tumor classification SEGMENTATION deep learning lesion detection
暂未订购
The Application Value of Ultrasound Imaging in the Differential Diagnosis of Benign and Malignant Breast Nodules of BI-RADS 3 and Above
6
作者 Dongmei Chen 《Proceedings of Anticancer Research》 2024年第2期53-58,共6页
Objective:To explore the diagnostic value of ultrasound imaging for breast nodules of breast imaging-reporting and data system(BI-RADS)category 3 and above.Methods:From June 2021 to July 2022,163 patients with breast ... Objective:To explore the diagnostic value of ultrasound imaging for breast nodules of breast imaging-reporting and data system(BI-RADS)category 3 and above.Methods:From June 2021 to July 2022,163 patients with breast nodules of BI-RADS 3 or above were selected as the research subjects.After pathological diagnosis,24 cases were malignant breast nodules of BI-RADS 3 or above,while 139 cases were benign breast nodules of BI-RADS 3 or above.The diagnosis rate of malignant and benign breast nodules of BI-RADS 3 or above,including 95%CI,was observed and analyzed.Results:The malignant and benign detection rates of conventional ultrasound were 88.63%and 75.00%,respectively,and the malignant and benign detection rates of ultrasound imaging were 93.18%and 87.50%,respectively,with 95%CIs greater than 0.7.Conclusion:Ultrasound imaging can help improve the diagnostic accuracy of benign and malignant breast nodules of BI-RADS 3 and above and reduce the misdiagnosis rate. 展开更多
关键词 ultrasound ultrasound imaging Breast imaging-reporting and data system(bi-rads)category 3 and above Diagnosis
暂未订购
Multi-task approach based on combined CNN-transformer for efficient segmentation and classification of breast tumors in ultrasound images
7
作者 Jaouad Tagnamas Hiba Ramadan +1 位作者 Ali Yahyaouy Hamid Tairi 《Visual Computing for Industry,Biomedicine,and Art》 2024年第1期387-401,共15页
Nowadays,inspired by the great success of Transformers in Natural Language Processing,many applications of Vision Transformers(ViTs)have been investigated in the field of medical image analysis including breast ultras... Nowadays,inspired by the great success of Transformers in Natural Language Processing,many applications of Vision Transformers(ViTs)have been investigated in the field of medical image analysis including breast ultrasound(BUS)image segmentation and classification.In this paper,we propose an efficient multi-task framework to segment and classify tumors in BUS images using hybrid convolutional neural networks(CNNs)-ViTs architecture and Multi-Perceptron(MLP)-Mixer.The proposed method uses a two-encoder architecture with EfficientNetV2 backbone and an adapted ViT encoder to extract tumor regions in BUS images.The self-attention(SA)mechanism in the Transformer encoder allows capturing a wide range of high-level and complex features while the EfficientNetV2 encoder preserves local information in image.To fusion the extracted features,a Channel Attention Fusion(CAF)module is introduced.The CAF module selectively emphasizes important features from both encoders,improving the integration of high-level and local information.The resulting feature maps are reconstructed to obtain the segmentation maps using a decoder.Then,our method classifies the segmented tumor regions into benign and malignant using a simple and efficient classifier based on MLP-Mixer,that is applied for the first time,to the best of our knowledge,for the task of lesion classification in BUS images.Experimental results illustrate the outperformance of our framework compared to recent works for the task of segmentation by producing 83.42%in terms of Dice coefficient as well as for the classification with 86%in terms of accuracy. 展开更多
关键词 Breast ultrasound segmentation and classification Breast tumors Convolutional Neural Networks Self-Attention MLP-Mixer Channel Attention
在线阅读 下载PDF
BI-RADS分类在超声诊断乳腺癌中的应用价值 被引量:6
8
作者 李开林 黄小平 +1 位作者 吴向东 方北 《中国医学创新》 CAS 2016年第19期42-44,共3页
目的:探讨超声乳腺影像报告和数据系统(BI-RADS)分类在诊断乳腺癌中的价值分析。方法:212例乳腺患者术前行常规超声检查,并对发现的254个结节进行常规BI-RADS分类,术后病理结果与BI-RADS对照分析。结果:254个结节中,BI-RADS 3类40个,4a... 目的:探讨超声乳腺影像报告和数据系统(BI-RADS)分类在诊断乳腺癌中的价值分析。方法:212例乳腺患者术前行常规超声检查,并对发现的254个结节进行常规BI-RADS分类,术后病理结果与BI-RADS对照分析。结果:254个结节中,BI-RADS 3类40个,4a类106个,4b类42个,4c类40个,5类22个,6类4个。术后病理证实良性结节162个,恶性结节92个,BI-RADS分类诊断乳腺癌的敏感性为95.6%(88/92),特异性为82.7%(134/162)。结论:超声BI-RADS分类诊断乳腺癌敏感性较高,具备很好的应用价值。 展开更多
关键词 乳腺癌 超声 bi-rads分类
暂未订购
超声新技术对BI-RADS 4类乳腺肿块诊断价值的探讨 被引量:3
9
作者 赵青 郭莉 +2 位作者 纪甜甜 杨晓婧 赵献萍 《影像研究与医学应用》 2019年第9期13-14,共2页
目的:探讨超声弹性成像面积比与声触诊组织量化新技术联合诊断乳腺BI-RADS 4类肿块的诊断价值。方法:选取我院经病理确诊的乳腺肿块患者122例(共122个病灶),所有病例均先行二维超声诊断为BI-RADS4类,再行弹性成像(VTI)面积比、声触诊组... 目的:探讨超声弹性成像面积比与声触诊组织量化新技术联合诊断乳腺BI-RADS 4类肿块的诊断价值。方法:选取我院经病理确诊的乳腺肿块患者122例(共122个病灶),所有病例均先行二维超声诊断为BI-RADS4类,再行弹性成像(VTI)面积比、声触诊组织量化(VTQ)对122例BI-RADS4类的乳腺肿块进行检查,以病理结果为金标准,比较两种新技术联合后与二维超声BI-RADS4类的乳腺肿块诊断有无差异。结果:二维超声的诊断灵敏度、特异度、准确率、阳性预测值、阴性预测值、假阴性率、假阳性率、阳性似然比、阴性似然比分别为80.0%、68.97%、0.4897、50.91%、89.55%、20%、31.03%、2.58、0.29,VTI面积比联合VTQ调整BI-RADS分类诊断后分别为91.43%、90.8%、0.8223、80%、96.34%、8.57%、9.2%、9.94、0.09。结论:超声弹性成像面积比联合声触诊组织量化新技术对乳腺BI-RADS4类肿块有较高的诊断价值。 展开更多
关键词 乳腺肿块 超声弹性成像面积比 声触诊组织量化 bi-rads分类
暂未订购
高频超声结合BI-RADS分级在乳腺肿瘤中的临床诊断价值 被引量:5
10
作者 卢伟荣 韩运生 +1 位作者 沈吉 沈俊俊 《中国医药导报》 CAS 2018年第19期125-128,共4页
目的探究高频超声结合BI-RADS分级在乳腺肿瘤中的临床诊断价值。方法选择2015年2月~2017年8月在湖州市中心医院进行治疗的128例乳腺肿瘤患者(159个病灶)的临床病历资料进行回顾性分析,应用高频超声对其双侧乳房进行扫查,根据BI-RADS对... 目的探究高频超声结合BI-RADS分级在乳腺肿瘤中的临床诊断价值。方法选择2015年2月~2017年8月在湖州市中心医院进行治疗的128例乳腺肿瘤患者(159个病灶)的临床病历资料进行回顾性分析,应用高频超声对其双侧乳房进行扫查,根据BI-RADS对乳腺病灶进行分级评价。将其BI-RADS分级情况与病理学结果进行对照分析,评价高频超声结合BI-RADS分级在乳腺肿瘤诊断中的临床价值。结果在159个乳腺肿瘤病灶中,经病理结果明确证实为良性病变98个,恶性病变61个。恶性病变病灶形态不规则、包膜不完整、边缘毛刺状、内部钙化以及腋下淋巴结异常的检出率明显高于良性病变病灶,差异有高度统计学意义(P<0.01)。恶性病变病灶的内部血流较良性病变病灶更加丰富,其Vmax水平、RI值明显高于良性病变病灶(P<0.01);两组的血流分级比较差异有高度统计学意义(P<0.01)。在BI-RADS分级诊断结果中,共计85个病灶被诊断为3级病灶(7个病理结果为恶性),35个被诊断为4级病灶(有17个病理结果为恶性),39个被诊断为5级病灶(37个病灶结果为恶性)。BI-RADS分级超声诊断的敏感度为88.52%(54/61),特异度为79.59%(78/98),准确度为83.02%(132/159)。结论 BI-RADS分级在诊断乳腺肿瘤中具有较高的敏感性和特异性。高频超声结合BI-RADS分级对于乳腺肿瘤的诊断定性以及指导治疗方案都具有重要意义。 展开更多
关键词 高频超声 bi-rads分级 乳腺肿瘤 诊断价值
暂未订购
乳腺癌超声BI-RADS分级与病理分型及免疫组化的比较分析 被引量:9
11
作者 何颖韬 周海萍 +3 位作者 谢丽丹 李颖 陈方红 杨伟斌 《中国现代医生》 2018年第2期96-99,F0003,共5页
目的比较分析乳腺癌超声BI-RADS分级与病理分型及免疫组化之间的关系。方法随机选取2014年12月~2016年12月间我院收治的乳腺癌患者62例作为研究对象,对62例患者的63个乳腺癌肿块的超声表现进行分析,并根据BI-RADS分级评估乳腺癌肿块,术... 目的比较分析乳腺癌超声BI-RADS分级与病理分型及免疫组化之间的关系。方法随机选取2014年12月~2016年12月间我院收治的乳腺癌患者62例作为研究对象,对62例患者的63个乳腺癌肿块的超声表现进行分析,并根据BI-RADS分级评估乳腺癌肿块,术后对标本进行病例组织学分类,分析免疫组化指标、超声表现两者间的相关性。结果 62例患者中,单侧多发1例,单侧单发61例。62例乳腺癌患者的63个肿块中3个(4.76%)3级,14个(22.22%)4级,46个(73.02%)5级;62例乳腺癌患者的63个肿块的位置,38个(60.32%)左乳、25个(39.68%)右乳。其中49个(77.78%)浸润性导管瘤,5个(7.94%)导管内癌,3个(4.76%)黏液腺癌,2个(3.17%)乳头状癌、3个(4.76%)浸润性小叶癌,1个(1.59%)鳞癌;49个浸润性导管瘤中有39个为5级,6个为4级,4个为3级,5个导管内癌中4个为5级,1个为4级,3个浸润性小叶癌中2个为5级1个为4级,2个乳头状癌和1个鳞癌均为5级,3个黏液腺癌为4级。结论 BI-RADS分级分析乳腺肿块的恶性特征准确性高,乳腺癌超声BI-RADS分级与病理分型及免疫组化间有相关性,BI-RADS分级能够对乳腺肿块的恶性特征进行比较准确的分析,能够为乳腺癌的临床治疗提供依据,确定有效的治疗方案,在乳腺癌的诊断中应用价值较高。 展开更多
关键词 乳腺癌超声 bi-rads分级 病理分型 免疫组化
暂未订购
Diagnostic classification of endosonography for differentiating colorectal ulcerative diseases: A new statistical method 被引量:7
12
作者 En-Qi Qiu Wen Guo +4 位作者 Tian-Ming Cheng Yong-Li Yao Wei Zhu Si-De Liu Fa-Chao Zhi 《World Journal of Gastroenterology》 SCIE CAS 2017年第46期8207-8216,共10页
AIM To establish a classification method for differential diagnosis of colorectal ulcerative diseases, especially Crohn's disease(CD), primary intestinal lymphoma(PIL) and intestinal tuberculosis(ITB).METHODS We s... AIM To establish a classification method for differential diagnosis of colorectal ulcerative diseases, especially Crohn's disease(CD), primary intestinal lymphoma(PIL) and intestinal tuberculosis(ITB).METHODS We searched the in-patient medical record database for confirmed cases of CD, PIL and ITB from 2008 to 2015 at our center, collected data on endoscopic ultrasound(EUS) from randomly-chosen patients who formed the training set, conducted univariate logistic regression analysis to summarize EUS features of CD, PIL and ITB, and created a diagnostic classification method. All cases found to have colorectal ulcers using EUS were obtained from the endoscopy database and formed the test set. We then removed the cases which were easily diagnosed, and the remaining cases formed the perplexing test set. We re-diagnosed the cases in the three sets using the classification method, determined EUS diagnostic accuracies, and adjusted the classification accordingly. Finally, the re-diagnosing and accuracy-calculating steps were repeated.RESULTS In total, 272 CD, 60 PIL and 39 ITB cases were diagnosed from 2008 to 2015 based on the in-patient database, and 200 CD, 30 PIL and 20 ITB cases were randomly chosen to form the training set. The EUS features were summarized as follows: CD: Thickened submucosa with a slightly high echo level and visible layer; PIL: Absent layer and diffuse hypoechoic mass; and ITB: Thickened mucosa with a high or slightly high echo level and visible layer. The test set consisted of 77 CD, 30 PIL, 23 ITB and 140 cases of other diseases obtained from the endoscopy database. Seventy-four cases were excluded to form the perplexing test set. After adjustment of the classification, EUS diagnostic accuracies for CD, PIL and ITB were 83.6%(209/250), 97.2%(243/250) and 85.6%(214/250) in the training set, were 89.3%(241/270), 97.8%(264/270) and 84.1%(227/270) in the test set, and were 86.7%(170/196), 98.0%(192/196) and 85.2%(167/196) in the perplexing set, respectively.CONCLUSION The EUS features of CD, PIL and ITB are different. The diagnostic classification method is reliable in the differential diagnosis of colorectal ulcerative diseases. 展开更多
关键词 Endoscopic ultrasound Ulcerative diseases Crohn’s disease Primary intestinal lymphoma Intestinal tuberculosis classification
暂未订购
超声弹性成像和X线钼靶在乳腺肿块BI-RADS分类诊断中的价值 被引量:3
13
作者 罗育端 王佳鑫 +1 位作者 陈漫清 杜玉虹 《中国当代医药》 2020年第8期137-139,143,共4页
目的 探讨超声弹性成像和X线钼靶在乳腺肿块BI-RADS分类诊断中的价值.方法 选取2017年1月~2018年12月我院收治的55例乳腺肿块患者作为研究对象,均行超声弹性成像与X线钼靶BI-RADS分类诊断.比较两种检查对乳腺肿块BI-RADS分类诊断的相关... 目的 探讨超声弹性成像和X线钼靶在乳腺肿块BI-RADS分类诊断中的价值.方法 选取2017年1月~2018年12月我院收治的55例乳腺肿块患者作为研究对象,均行超声弹性成像与X线钼靶BI-RADS分类诊断.比较两种检查对乳腺肿块BI-RADS分类诊断的相关指标以及对不同直径乳腺肿块的诊断价值.结果 组织病理检查结果显示,恶性肿瘤20例,良性肿瘤35例.超声弹性成像BI-RADS分类诊断乳腺肿块的准确率与X线钼靶BI-RADS分类诊断比较,差异无统计学意义(P>0.05).超声弹性成像BI-RADS分类诊断直径<1 cm肿块的灵敏度、特异度、准确度低于X线钼靶BI-RADS分类诊断,差异有统计学意义(P<0.05);诊断直径1~2 cm肿块的灵敏度、特异度、准确度与X线钼靶BI-RADS分类诊断比较,差异无统计学意义(P>0.05);诊断直径>2 cm肿块的灵敏度、特异度、准确度高于X线钼靶BI-RADS分类诊断,差异有统计学意义(P<0.05).结论 超声弹性成像与X线钼靶对乳腺肿块BI-RADS分类均有较高的诊断价值,两者对不同直径乳腺肿块的诊断各具优势. 展开更多
关键词 超声弹性成像 X线钼靶 乳腺肿块 bi-rads分类
暂未订购
超声造影联合年龄在乳腺BI-RADS 4类结节再分类中的应用价值 被引量:2
14
作者 陈芮 周鸿 +2 位作者 翟蓓 杨兴洲 赵宇心 《成都医学院学报》 CAS 2024年第3期415-418,共4页
目的 探讨超声造影联合年龄在乳腺影像学报告及数据系统(BI-RADS)4类结节再分类中的应用价值。方法 收集成都市第三人民医院常规超声分类为BI-RADS 4类,且经过超声造影评分并有病理结果的116个乳腺结节患者的临床资料。以病理诊断为金标... 目的 探讨超声造影联合年龄在乳腺影像学报告及数据系统(BI-RADS)4类结节再分类中的应用价值。方法 收集成都市第三人民医院常规超声分类为BI-RADS 4类,且经过超声造影评分并有病理结果的116个乳腺结节患者的临床资料。以病理诊断为金标准,构建受试者工作特征(ROC)曲线,计算超声造影评分及年龄诊断乳腺良恶性结节的最佳截断值,并分析其诊断价值。利用超声造影评分及年龄的最佳截断值,对116个BI-RADS 4类结节重新进行分类调整。结果 通过绘制ROC曲线得到超声造影评分的最佳截断值为3.5分,年龄的最佳截断值为50.5岁。超声造影评分的ROC曲线下面积为0.887,其诊断乳腺结节良恶性的敏感性及特异性分别为80.8%、96.7%;年龄的ROC曲线下面积为0.793,其诊断乳腺结节良恶性的敏感性及特异性分别为73.1%、85.6%。BI-RADS 4类结节经超声造影评分联合年龄临界值重新调整后,59个结节降为3类,病理结果均为良性;11个结节升为4c类,病理结果均为恶性。结论 超声造影评分联合年龄对BI-RADS 4类结节进行重新分类后可有效提高乳腺结节诊断的准确性,能为临床诊疗提供参考。 展开更多
关键词 乳腺结节 bi-rads分类 超声造影 年龄
暂未订购
Diagnostic value of artificial intelligence automatic detection systems for breast BI-RADS 4 nodules 被引量:9
15
作者 Shu-Yi Lyu Yan Zhang +4 位作者 Mei-Wu Zhang Bai-Song Zhang Li-Bo Gao Lang-Tao Bai Jue Wang 《World Journal of Clinical Cases》 SCIE 2022年第2期518-527,共10页
BACKGROUND The incidence rate of breast cancer has exceeded that of lung cancer,and it has become the most malignant type of cancer in the world.BI-RADS 4 breast nodules have a wide range of malignant risks and are as... BACKGROUND The incidence rate of breast cancer has exceeded that of lung cancer,and it has become the most malignant type of cancer in the world.BI-RADS 4 breast nodules have a wide range of malignant risks and are associated with challenging clinical decision-making.AIM To explore the diagnostic value of artificial intelligence(AI)automatic detection systems for BI-RADS 4 breast nodules and to assess whether conventional ultrasound BI-RADS classification with AI automatic detection systems can reduce the probability of BI-RADS 4 biopsy.METHODS A total of 107 BI-RADS breast nodules confirmed by pathology were selected between June 2019 and July 2020 at Hwa Mei Hospital,University of Chinese Academy of Sciences.These nodules were classified by ultrasound doctors and the AI-SONIC breast system.The diagnostic values of conventional ultrasound,the AI automatic detection system,conventional ultrasound combined with the AI automatic detection system and adjusted BI-RADS classification diagnosis were statistically analyzed.RESULTS Among the 107 breast nodules,61 were benign(57.01%),and 46 were malignant(42.99%).The pathology results were considered the gold standard;furthermore,the sensitivity,specificity,accuracy,Youden index,and positive and negative predictive values were 84.78%,67.21%,74.77%,0.5199,66.10%and 85.42%for conventional ultrasound BI-RADS classification diagnosis,86.96%,75.41%,80.37%,0.6237,72.73%,and 88.46%for automatic AI detection,80.43%,90.16%,85.98%,0.7059,86.05%,and 85.94%for conventional ultrasound BI-RADS classification with automatic AI detection and 93.48%,67.21%,78.50%,0.6069,68.25%,and 93.18%for adjusted BI-RADS classification,respectively.The biopsy rate,cancer detection rate and malignancy risk were 100%,42.99%and 0%and 67.29%,61.11%,and 1.87%before and after BI-RADS adjustment,respectively.CONCLUSION Automatic AI detection has high accuracy in determining benign and malignant BI-RADS 4 breast nodules.Conventional ultrasound BI-RADS classification combined with AI automatic detection can reduce the biopsy rate of BI-RADS 4 breast nodules. 展开更多
关键词 bi-rads classification Artificial intelligence Breast nodules Breast tumor
暂未订购
多模态超声对于乳腺癌不同BI-RADS分类诊断的价值及与分子分型的关系 被引量:12
16
作者 任少杰 姜菊 吕洪兵 《分子诊断与治疗杂志》 2020年第9期1242-1245,1250,共5页
目的探究多模态超声技术在不同超声BI-RADS分类乳腺良恶性结节诊断中的价值及与乳腺癌分子分型的关系。方法纳入本院2017年12月至2019年12月165例疑似乳腺癌患者,以病理检查结果为金标准,对比多模态超声诊断的准确率、敏感性和特异性;... 目的探究多模态超声技术在不同超声BI-RADS分类乳腺良恶性结节诊断中的价值及与乳腺癌分子分型的关系。方法纳入本院2017年12月至2019年12月165例疑似乳腺癌患者,以病理检查结果为金标准,对比多模态超声诊断的准确率、敏感性和特异性;依据超声影像进行BI-RADS分级,对比不同BI-RADS分级的诊断准确率,并分析超声征象与乳腺癌分型的相关性。结果病理诊断结果显示良性104例(63.0%),恶性61例(37.0%)。多模态超声联合诊断的敏感度为93.4%,特异度为94.2%,阳性预测值为90.5%,阴性预测值为96.1%,均显著高于常规超声、超声造影及超声弹性成像(P<0.05)。乳腺癌不同BI-RADS分级患者病灶直径、良恶性比例、恶性诊断准确率比较差异具有统计学意义(P<0.05);不同BI-RADS分级患者病理分型比较差异无统计学意义(P>0.05)。Luminal A型、Luminal B型、HER-2过表达及三阴性病灶直径、高回声晕比较差异无统计学意义(P>0.05);纵横比、内部回声是否均匀、微钙化比比较差异具有统计学意义(P<0.05)。结论联合多模态超声检测并结合BI-RADS分类可显著提升乳腺癌的诊断准确率,通过超声征象可初步判断乳腺癌分子分型,对乳腺癌患者的临床诊疗具有良好价值。 展开更多
关键词 乳腺癌 多模态超声 bi-rads分类 分子分型
暂未订购
基于深度学习的乳腺超声图像BI-RADS五分类方法 被引量:1
17
作者 佘芙蓉 易伦朝 +2 位作者 罗晓茂 李玲兰 易三莉 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期815-824,共10页
基于乳腺超声图像研究了一种深度学习自动分类算法TDS-Net,用于实现乳腺影像报告和数据系统(BI-RADS)3、4a、4b、4c、5级的五分类.TDS-Net设计了双支路的结构:首先,第一条支路采用提出的DDModule叠加构成,该模块能够减少超声图像中的伪... 基于乳腺超声图像研究了一种深度学习自动分类算法TDS-Net,用于实现乳腺影像报告和数据系统(BI-RADS)3、4a、4b、4c、5级的五分类.TDS-Net设计了双支路的结构:首先,第一条支路采用提出的DDModule叠加构成,该模块能够减少超声图像中的伪影并提取丰富的局部细节特征;其次,第二条支路由卷积块构成,它主要用于提取图像的全局特征信息,作为第一支路的信息补充;最后,将两条支路融合得到含有丰富特征信息的融合特征图,并采用深度可分离卷积和SENet进一步提取图中的信息,其中,深度可分离卷积能够减少参数并增加网络的非线性进而增强其提取特征的能力,SENet注意力机制能增强高阶特征信息的提取.为验证该算法,采用云南省肿瘤医院提供的数据进行实验,结果显示准确率、精准率、F1值分别为94.67%、94.81%、94.69%,均高于对比算法,体现了该算法的优越性.同时为验证该算法的鲁棒性和普适性,基于两个公共数据集做了良恶性二分类的实验,实验结果同样高于对比算法.这些结果表明,所提算法TDS-Net对乳腺超声图像具有较强的识别能力,有望应用于临床医学. 展开更多
关键词 图像分类 乳腺超声图像 乳腺影像报告和数据系统 深度学习 卷积神经网络
在线阅读 下载PDF
基于超声BI-RADS分类对不同病理类型乳腺肿块超声诊断符合率的质量控制 被引量:3
18
作者 陈桂武 罗海波 +4 位作者 刘文芹 操勇杰 李霞 陈沛芬 谢玉环 《妇儿健康导刊》 2023年第10期25-27,33,共4页
目的探讨基于超声BI-RADS分类对不同病理类型乳腺肿块超声诊断符合率的质量控制。方法选取2018年1月至2021年12月于南方医科大学附属东莞医院行超声检查的9471例女性患者。经病理证实乳腺肿块共9995个,采用Kappa检验分析超声检查与病理... 目的探讨基于超声BI-RADS分类对不同病理类型乳腺肿块超声诊断符合率的质量控制。方法选取2018年1月至2021年12月于南方医科大学附属东莞医院行超声检查的9471例女性患者。经病理证实乳腺肿块共9995个,采用Kappa检验分析超声检查与病理结果的一致性。结果病理结果显示,良性7762个,恶性2233个;超声诊断BI-RADS 1类25.00%、2类8.42%、3类1.83%、4a类8.80%、4b类50.60%、4c类93.35%、5类98.66%,超声检查结果与病理结果的一致性良好(Kappa=0.712,P<0.001)。结论不同病理类型乳腺肿块的超声诊断符合率较高,但仍存在误诊漏诊情况。了解乳腺超声检查的现状和不足,对超声诊断的质量控制具有一定的临床意义。 展开更多
关键词 乳腺肿块 超声检查 bi-rads分类 质量控制
暂未订购
自动乳腺全容积成像对乳腺BI-RADS 4类病变再次分级的诊断价值 被引量:1
19
作者 周芳芳 陈方红 +1 位作者 冯娅琴 黄品同 《浙江临床医学》 2023年第9期1378-1381,共4页
目的探讨自全容积动乳腺成像(ABUS)对乳腺超声影像报告和数据系统(BI-RADS)4类乳腺病变再次分级的诊断价值。方法回顾性分析203个乳腺病灶术前的常规超声及ABUS资料。以术后病理结果为金标准,分析ABUS对常规超声BI-RADS 4类病变再次分... 目的探讨自全容积动乳腺成像(ABUS)对乳腺超声影像报告和数据系统(BI-RADS)4类乳腺病变再次分级的诊断价值。方法回顾性分析203个乳腺病灶术前的常规超声及ABUS资料。以术后病理结果为金标准,分析ABUS对常规超声BI-RADS 4类病变再次分级的诊断价值。结果常规超声BI-RADS分类及ABUS BI-RADS分类诊断乳腺恶性病灶的敏感性、特异性、准确率、阳性预测值和阴性预测值分别为71.6%、91.3%、82.7%、86.3%、80.8%和92.9%、92.4%、94.0%、91.7%、95.0%。两者ROC曲线下面积分别为0.814、0.921(Z=2.660,P<0.005)。结论ABUS可以提高乳腺恶性病变的诊断准确率,减少部分常规超声BI-RADS 4类病变不必要的穿刺活检。 展开更多
关键词 自动乳腺全容积成像 乳腺超声影像报告和数据系统4类 分级
暂未订购
BI-RADS分级在乳腺单纯浸润性非特殊癌中的价值与应用 被引量:3
20
作者 陈逸凡 李星阳 +3 位作者 向俊桦 潘丹怡 刘雯 刘晖 《分子影像学杂志》 2023年第6期1055-1059,共5页
目的 分析BI-RADS标准化超声分级4C类病灶征象运用于乳腺浸润性癌非特殊型诊断时与病理征象的关联性及此类型癌的年龄分布,探讨BI-RADS分级标准应用于乳腺浸润性癌非特殊型诊断中的价值。方法 随机收集福建省立医院超声科于2020年5月~2... 目的 分析BI-RADS标准化超声分级4C类病灶征象运用于乳腺浸润性癌非特殊型诊断时与病理征象的关联性及此类型癌的年龄分布,探讨BI-RADS分级标准应用于乳腺浸润性癌非特殊型诊断中的价值。方法 随机收集福建省立医院超声科于2020年5月~2023年5月所收治的88例超声BI-RADS 4C类的乳腺癌患者作为研究对象,针对患者年龄及病理检查结果进行分类,并对不同年龄段患不同类型乳腺疾病的患者的病灶超声特征与病理特征相关性进行讨论。结果 超声检查及病理追踪分析结果发现,在BI-RADS 4C类88例患者中,≥40岁的患者人数占90%,<40岁的患者人数占10%;在乳腺浸润性非特殊癌中,≥40岁的患者人数占比95%,<40岁的患者人数占比5%。单纯浸润性非特殊癌在病理检查结果中占总数的64.77%,其余非单纯浸润性非特殊癌占35.23%。结论 综合数据分析超声检查与BI-RADS分级结合在单纯浸润性非特殊癌中的检出率明显较高,有利于制定对应的治疗措施,更加突出BI-RADS分级在乳腺单纯浸润性非特殊癌中的检出率和运用。 展开更多
关键词 bi-rads分级 乳腺单纯浸润性非特殊癌 超声诊断
暂未订购
上一页 1 2 20 下一页 到第
使用帮助 返回顶部