Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received wides...Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices.During bipolar high electric-field cycling in numbers close to dielectric breakdown,the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf_(0.5)Zr_(0.5)O_(2) thin-film capacitors.Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85μm when the ferroelectricity suddenly disappears without high-field cycling.The stored charge density is as high as 183μC cm^(−2) at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 10^(12) without inducing dielectric breakdown.The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase.The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries.The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future.展开更多
The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature a...The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures.展开更多
How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will...How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.展开更多
Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes.In this study,we successfully generated pressures of 37.3-40.4 GPa at 1900-2100 K in a Walker-type large-volum...Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes.In this study,we successfully generated pressures of 37.3-40.4 GPa at 1900-2100 K in a Walker-type large-volume press(LVP).Expansion of the pressure range at high temperatures was achieved by adapting newly designed ZK01F tungsten carbide(WC)anvils with tapered surfaces and using cell assemblies with an^(-1) mm^(3) sample volume and hard materials,as well as by applying certain adjustments to the apparatus.The pressure efficiencies of the different types of WC anvils and cell assemblies were also studied.Using the above-mentioned techniques,we successfully synthesized and characterized bulk samples of nearly pure sp3-hybridized ultrahard amorphous carbon,core-shell nanocrystals with high Néel temperatures,as well as large-sized single crystals of lower-mantle minerals.The developed LVP techniques presented here could enable the exploration of the chemical and physical properties of novel materials and Earth’s interior.展开更多
Single-step ethylene polymerization over a binary catalyst,including zirconocene precatalysts of various designs,has been studied to obtain polymer compositions based on ultrahigh-molecular-weight polyethylene(UHMWPE)...Single-step ethylene polymerization over a binary catalyst,including zirconocene precatalysts of various designs,has been studied to obtain polymer compositions based on ultrahigh-molecular-weight polyethylene(UHMWPE)and low-molecular-weight HDPE(LMWPE)directly in synthesis.Zirconocenes rac-(CH_(3))_(2)Silnd_(2)ZrCl_(2)(Zr-1)and rac-(C_(6)H_(10))CplndZrCl_(2)(Zr-2)activated with methylaluminoxane(MAO)were used as the components of the binary catalyst.It has been shown that the use of Zr-1/MAO and Zr-2/MAO in ethylene polymerization at 30℃leads to the production of UHMWPE with Mw=1000 kg-mol^(-1)and LMWPE with Mw=18 kg·mol^(-1),respectively.Reactor polymer compositions(RPC)with LMWPE fraction contents ranging from 9 wt%to 42 wt%were obtained when a molar fraction of Zr-2 in the binary catalyst(Zr-1+Zr-2)/MAO va ried in the range from 0.3 to 0.85.A study of the molecular weight characteristics of RPC showed that it has a wide bimodal molecular weight distribution(MWD)and includes UHMWPE(Mw=1000 kg·mol^(-1))and LMWPE(Mw=18 kg·mol^(-1))fractions.The degree of crystallinity of the polymer products was determined using the DSC method.The tensile properties and melt indices of the materials were studied depending on the LMWPE fraction content in the polymer composition.UHMWPE/LMWPE compositions with high tensile properties and fluidity at a load of 5 kg were obtained.展开更多
This study deals with the development of a 780-MPa-class hot-rolled advanced high-strength steel(AHSS)with an ultrahigh elongation at break of approximately 30%and strength-ductility product exceeding 24 GPa·%,in...This study deals with the development of a 780-MPa-class hot-rolled advanced high-strength steel(AHSS)with an ultrahigh elongation at break of approximately 30%and strength-ductility product exceeding 24 GPa·%,indicating the excellent formability of the newly developed AHSS.The microstructure of the newly developed 780-MPa-class AHSS consists mainly of the triplex phase of ferrite,bainite,and retained austenite with a volume fraction of 10%±2%.The stability of the retained austenite in the newly developed AHSS is much higher than that of conventional transformation-induced plasticity steels,in which the retained austenite is prone to transformation into martensite under deformation.At a pre-strain lower than 1.2%,the volume fraction of the retained austenite and the elongation at break of the present 780-MPa-class AHSS remain almost unchanged,showing a high tolerance in the process window during leveling or straightening.Therefore,the present 780-MPa-class AHSS is particularly suitable for the production of components with complex shapes.展开更多
The current generation of ultrahigh temperature ceramic precursors typically encounters obstacles in achieving high ceramic yields(<40 wt.%)due to the challenges in integrating significant amounts of boron,which ha...The current generation of ultrahigh temperature ceramic precursors typically encounters obstacles in achieving high ceramic yields(<40 wt.%)due to the challenges in integrating significant amounts of boron,which hampers their conversion into boride-based ultrahigh temperature ceramics.To tackle these challenges,a serious of pioneering liquid multi-component hafnium-containing ceramic SiHfCB precursors(with different Hf/Si ratios)have been developed.These novel precursors are featured with stable molec-ular structure and high ceramic yield which were successfully created through a novel one-pot polymer-ization process.They present in liquid form and their structure is characterized by C-C bonds forming its main chain with branched chains of O-Si-O,Si-O-Hf,Si-O-B,and B-O-Hf which have untapped advantages including uniform component dispersion,and excellent fluidity.The ceramic yield of SiHfCB precursor with Hf/Si of 0.2 is remarkably up to 68.6 wt.%at 1500℃,and their Hf content exceeded 50 wt.%.Of particular interest,the pyrolyzed product HfB_(2)-SiC nanopowders derived from the SiHfCB precursor with Hf/Si of 0.2,consist of nanopowders in the 40-60 nm range with a density of 5.23 g cm^(−3).Remarkably,this material demonstrates exceptional performance in ultrahigh temperature oxygen-containing environ-ments at 2500℃,showing near-zero ablation with a linear ablation rate of just 2.5×10^(−4) mm s^(−1).Post-ablation analysis of the microstructure reveals that the formation of a lava-like HfO_(2) and HfO_(2)-SiO_(2) oxide layer effectively blocks oxygen penetration and provides excellent oxidation resistance.The inno-vative SiHfCB hafnium-containing ceramic precursor offers a groundbreaking solution for the preparation of lightweight ultrahigh-temperature ceramics.This development is poised to provide robust technical support for the use of ultrahigh temperature ceramics in non-ablative thermal protective systems,partic-ularly in the construction of hypersonic vehicles,where ultrahigh temperature resilience is crucial.展开更多
Mg-1.2Y-1.2Ni(at.%)alloy was extruded at 400℃with an extrusion ratio of 16:1 and different rates from 1 to 6 mm/s.The effect of extrusion rate on microstructure and mechanical properties of the Mg-1.2Y-1.2Ni alloy wa...Mg-1.2Y-1.2Ni(at.%)alloy was extruded at 400℃with an extrusion ratio of 16:1 and different rates from 1 to 6 mm/s.The effect of extrusion rate on microstructure and mechanical properties of the Mg-1.2Y-1.2Ni alloy was systematically investigated.With the increase of extrusion rate,the average recrystallized grain size of Mg-1.2Y-1.2Ni alloy and mean particle diameter of Mg2Ni phase were increased,while the density of geometrically necessary dislocation and the intensity of the basal texture were decreased.When extrusion rate increases from 1 to 6 mm/s,the tensile yield strength(TYS)of asextruded Mg-1.2Y-1.2Ni alloy decreases from 501 to 281 MPa,while the elongation to failure increases from 1.5%to 6.2%.The Mg-1.2Y-1.2Ni alloy extruded at 3 mm/s obtained TYS of 421 MPa,the ultimate tensile strength(UTS)of 440 MPa and elongation to failure of 2.6%,respectively,exhibiting comprehensive mechanical properties with relatively good plasticity and ultrahigh strength.The ultrahigh TYS of 501 and 421 MPa was mainly due to the strengthening from ultrafine recrystallized grains,high volume fraction long period stacking ordered(LPSO)phases and high density dislocations.展开更多
In this study we theoretically demonstrate ultrahigh-resolution two-dimensional atomic localization within a three-levelλ-type atomic medium via superposition of asymmetric and symmetric standing wave fields.Our anal...In this study we theoretically demonstrate ultrahigh-resolution two-dimensional atomic localization within a three-levelλ-type atomic medium via superposition of asymmetric and symmetric standing wave fields.Our analysis provides an understanding of the precise spatial localization of atomic positions at the atomic level,utilizing advanced theoretical approaches and principles of quantum mechanics.The dynamical behavior of a three-level atomic system is thoroughly analyzed using the density matrix formalism within the realm of quantum mechanics.A theoretical approach is constructed to describe the interaction between the system and external fields,specifically a control field and a probe field.The absorption spectrum of the probe field is thoroughly examined to clarify the spatial localization of the atom within the proposed configuration.A theoretical investigation found that symmetric and asymmetric superposition phenomena significantly influence the localized peaks within a two-dimensional spatial domain.Specifically,the emergence of one and two sharp localized peaks was observed within a one-wavelength domain.We observed notable influences of the intensity of the control field,probe field detuning and decay rates on atomic localization.Ultimately,we have achieved an unprecedented level of ultrahigh resolution and precision in localizing an atom within an area smaller thanλ/35×λ/35.These findings hold promise for potential applications in fields such as Bose-Einstein condensation,nanolithography,laser cooling,trapping of neutral atoms and the measurement of center-of-mass wave functions.展开更多
To investigate the effects of the spraying process and different fibers on the mechanical properties and failure patterns of ultrahigh performance concrete(UHPC),three types of fibers were used.These fibers were forme...To investigate the effects of the spraying process and different fibers on the mechanical properties and failure patterns of ultrahigh performance concrete(UHPC),three types of fibers were used.These fibers were formed using both spraying and molding methods.Uniaxial compression tests were conducted,and two nondestructive monitoring techniques,acoustic emission(AE)and digital image correlation,were employed to monitor the uniaxial compression tests.The results indicated that the compressive strength of UHPC with single steel fibers and hybrid fibers increased by about 19%and 14%compared with those of UHPC with polyoxymethylene fibers.In comparison with molded UHPC,sprayed UHPC showed a slight improvement in compressive strength.Specimens containing steel fibers exhibited better post-cracking ductility,whereas those with only polyoxymethylene fibers displayed a certain degree of brittle failure.In sprayed UHPC,the onset of significant internal damage was delayed,which was related to the redistribution of internal fibers.The failure of UHPC was characterized by primary tensile cracks,supplemented by shear cracks.The spraying process can better restrict the development of tensile cracks in UHPC.Sprayed UHPC typically exhibited multiple crack developments leading to failure,whereas molded UHPC generally failed in the form of a single main crack penetrating the specimen.The addition of steel fibers delayed the occurrence of local stress concentration zones,aligning well with AE monitoring data.展开更多
High-loading Pt/C catalysts play an important role in the fabrication of membrane electrode assemblies with thin catalytic layer,which enhance mass transport and maintain the balance of water and heat.Unfortunately,as...High-loading Pt/C catalysts play an important role in the fabrication of membrane electrode assemblies with thin catalytic layer,which enhance mass transport and maintain the balance of water and heat.Unfortunately,as the loading increases,the agglomeration and growth of Pt nanoparticles(NPs)occur,causing unsatisfactory performance.Here,we present an efficient method for preparing of highly dispersed and small-sized Pt/C catalysts with Pt loadings varying from 39.01 wt%to 66.48 wt%through the high-temperature shock technique.The high density and ultrafine(~2.5 nm)Pt NPs are successfully anchored onto Vulcan XC-72R carbon black without the use of additional capping agents or surfactants.The modified carbon supports enhance the affinity for Pt precursors,contributing to loading efficiencies of 95%or more,while also providing abundant sites for the nucleation and fixation of Pt NPs,thus preventing agglomeration.In the context of the hydrogen evolution reaction in acidic media,the as-synthesized high-loading Pt/C catalysts show remarkable activity and stability,outperforming the state-of-the-art commercial Pt/C.This is mainly because the combined effects of ultrasmall and uniform Pt NPs,optimized electronic structure of Pt site,superhydrophilicity and effective anchoring of Pt NPs.The polymer electrolyte membrane electrolyzer integrated with Pt60/OX72R and commercial IrO2 reaches 1 A cm^(-2)at 1.77 V and operates stably for 120 hours with a negligible voltage decay.This new strategy is fast,scalable and cost-effective for large-scale production of metal-supported catalysts,especially for the high-loading ones.展开更多
To satisfy the demand for low-cost and long-range electric vehicles by the market,the commercialization of ultrahigh nickel cathode materials with high specific capacity and a wide electrochemical window is expected t...To satisfy the demand for low-cost and long-range electric vehicles by the market,the commercialization of ultrahigh nickel cathode materials with high specific capacity and a wide electrochemical window is expected to facilitate the development of lithium-ion batteries.However,residual lithium compounds with a strong alkalinity cause difficulty in cathode preparation and indirectly affect the cycling stability of the cathode during cycling.Given the inevitability of the formation of residual alkali,a lithium-borate coating with an adjustable thickness was selected by controlling the formation of residual alkali.An additional lithium source was added to the synthesis process and converted into a thicker and more complete coating structure,which rendered the cathode with better cycle stability.As a res-ult,the percentage of peak area of lithium carbonate on the surface-modified cathode surface exhibited a considerable decrease from 38.07%to 28.26%.The etching results show the formation of a uniform coating layer after boric acid treatment.The initial capacity of the treated cathode was 214.6 mAh·g^(-1) owing to the favorable effect of the surface coating,and the capacity retention raised from 59.35%to 90.75%and from 63.81%to 91.94%after cycling at 0.5 and 1 C current densities,respectively.The boric acid coating-modified strategy proposed in this paper considerably ameliorates the cycling stabilization of cathodes and provides superior commercial application value for ultrahigh nickel cathode materials.展开更多
This paper investigates interfacial heat transfer characteristics in amulti-layer structure under ultra-high heat flux conditions,focusing on thermal contact resistance(TCR)between adjacent layers.Athree-layer computa...This paper investigates interfacial heat transfer characteristics in amulti-layer structure under ultra-high heat flux conditions,focusing on thermal contact resistance(TCR)between adjacent layers.Athree-layer computational model with dual rough interfaces was developed to systematically analyze the synergistic effects of interfacial pressure,surface emissivity,and thermal interface materials(TIMs).Surface reconstruction using experimental measurement data generated two representative roughness models to quantify the impact of surface roughness on heat dissipation.Numerical simulations demonstrate that the absence of TIMs leads to insufficient thermal dissipation capacity under ultra-high heat flux conditions.Compared to TIMapplication,merely increasing the convective heat transfer coefficient shows limited effectiveness in enhancing heat dissipation efficiency.展开更多
1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineeri...1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineering[1].At present,NM alloys can be produced by several synthesis methods,including sintering of nanocomposites[2,3],physical or chemical vapour deposition(PVD or CVD)[4],crystallization of metallic glasses[5],and severe plastic deforma-tion(SPD)[6-8].However,industry applications of bulk NM alloys produced by these methods are significantly restricted by their ge-ometrical and size limitations.Thus,the fabrication of large-scale NM alloys remains challenging.展开更多
This paper presents our endeavors in developing the large-scale, ultra-high-resolution E3SM Land Model (uELM), specifically designed for exascale computers furnished with accelerators such as Nvidia GPUs. The uELM is ...This paper presents our endeavors in developing the large-scale, ultra-high-resolution E3SM Land Model (uELM), specifically designed for exascale computers furnished with accelerators such as Nvidia GPUs. The uELM is a sophisticated code that substantially relies on High-Performance Computing (HPC) environments, necessitating particular machine and software configurations. To facilitate community-based uELM developments employing GPUs, we have created a portable, standalone software environment preconfigured with uELM input datasets, simulation cases, and source code. This environment, utilizing Docker, encompasses all essential code, libraries, and system software for uELM development on GPUs. It also features a functional unit test framework and an offline model testbed for comprehensive numerical experiments. From a technical perspective, the paper discusses GPU-ready container generations, uELM code management, and input data distribution across computational platforms. Lastly, the paper demonstrates the use of environment for functional unit testing, end-to-end simulation on CPUs and GPUs, and collaborative code development.展开更多
Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, convention...Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders.展开更多
Directionally solidified (DS) specimens of Nb-Ti-Si based ultrahigh temperature alloy were heat-treated at (1 500 ℃, 50 h) and (1 500 ℃, 50 h) + (1 100 ℃, 50 h), respectively. The results show that the mic...Directionally solidified (DS) specimens of Nb-Ti-Si based ultrahigh temperature alloy were heat-treated at (1 500 ℃, 50 h) and (1 500 ℃, 50 h) + (1 100 ℃, 50 h), respectively. The results show that the microstructures become uniform, the long and big primary (Nb,X)sSi3 (X represents Ti and Hf elements) plates in the DS specimens are broken into small ones, and the eutectic cells lose their lamellar morphology and their interfaces become blurry after heat-treatment. Meanwhile, the (Nb,X)sSi3 slices in the eutectic cells of the DS specimens coarsen obviously after heat-treatment. Homogenizing and aging treatments could effectively eliminate elemental microsegregation, and the segregation ratios of all elements in niobium solid solution (Nbss) in different regions tend to 1. After heat-treatment, the microhardness of retained eutectic cells increases evidently, and the maximum value reaches HV1 404.57 for the specimen directionally solidified with a withdrawing rate of 100 μm/s and then heat-treated at (1 500 ℃, 50 h) + (1 100 ℃, 50 h), which is 72.8 % higher than that under DS condition.展开更多
To investigate the effects of homogenizing and aging treatments on the microstructure of an Nb-Ti-Cr-Si based ultrahigh temperature alloy,coupons were homogenized at 1 200-1 500 °C for 24 h,and then aged at 1 000...To investigate the effects of homogenizing and aging treatments on the microstructure of an Nb-Ti-Cr-Si based ultrahigh temperature alloy,coupons were homogenized at 1 200-1 500 °C for 24 h,and then aged at 1 000 °C for 24 h.The results show that the heat-treated alloy is composed of Nb solid solution(Nbss),(Nb,X)5Si3 and Cr2Nb phases.With the increase of heat-treatment temperature,previous Nbss dendrites transformed into equiaxed grains,and petal-like Nbss/(Nb,X)5Si3 eutectic colonies gradually changed into small(Nb,X)5Si3 particles distributed in Nbss matrix.A drastic change occurred in the morphology of the Laves phase after homogenizing treatment.Previously coarse Cr2Nb blocks dissolved during homogenizing at temperature above 1 300 °C,and then much finer and crowded Cr2Nb flakes precipitated in the Nbss matrix in cooling.Aging treatment at 1 000 °C for 24 h led to further precipitation of fine particles of Laves phase in Nbss matrix and made the difference in concentrations of Ti,Hf and Al in Nbss,(Nb,X)5Si3 and Cr2Nb phases reduced.展开更多
The influence of double aging on the microstructure and mechanical properties of ultrahigh strength steel Aermet 100 was analyzed. Under the double aging, there is no apparent decrease in the strength of steel. Howeve...The influence of double aging on the microstructure and mechanical properties of ultrahigh strength steel Aermet 100 was analyzed. Under the double aging, there is no apparent decrease in the strength of steel. However, the impact fatigue life can be prolonged by 35.5% and dynamic fracture toughness be raised by 22.6% respectively, as compared with the normal aging. Based on the observation of microscopic structure, the physical mechanism of the prolongation of impact fatigue life and the enhancement of stability of the reverted austenite, AR, is analyzed further. The results show that this new technique is a breakthrough of combination optimization between strength and toughness for Aermet 100 steel. In the light of the current understanding on this subject, the volume fracture of soften and tough AR formed in process of heat preservation at higher temperature of double aging increases drastically. Moreover, during the treatment of lower temperature of double aging, the carbon separating from the martensitic ferrite will diffuse into AR, resulting that the martensitic brittleness decreases and the stability of AR increases.展开更多
Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM)...Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.展开更多
基金supported by the National Key Basic Research Program of China (2022YFA1402904)Basic Research Project of Shanghai Science and Technology Innovation Action (grant number 24CL2900900)the National Natural Science Foundation of China (grant number 61904034)
文摘Innovative use of HfO_(2)-based high-dielectric-permittivity materials could enable their integration into few-nanometre-scale devices for storing substantial quantities of electrical charges,which have received widespread applications in high-storage-density dynamic random access memory and energy-efficient complementary metal-oxide-semiconductor devices.During bipolar high electric-field cycling in numbers close to dielectric breakdown,the dielectric permittivity suddenly increases by 30 times after oxygen-vacancy ordering and ferroelectric-to-nonferroelectric phase transition of near-edge plasma-treated Hf_(0.5)Zr_(0.5)O_(2) thin-film capacitors.Here we report a much higher dielectric permittivity of 1466 during downscaling of the capacitor into the diameter of 3.85μm when the ferroelectricity suddenly disappears without high-field cycling.The stored charge density is as high as 183μC cm^(−2) at an operating voltage/time of 1.2 V/50 ns at cycle numbers of more than 10^(12) without inducing dielectric breakdown.The study of synchrotron X-ray micro-diffraction patterns show missing of a mixed tetragonal phase.The image of electron energy loss spectroscopy shows the preferred oxygen-vacancy accumulation at the regions near top/bottom electrodes as well as grain boundaries.The ultrahigh dielectric-permittivity material enables high-density integration of extremely scaled logic and memory devices in the future.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(Grant Nos.42272041 and 52302043)+2 种基金the National Natural Science Foundation of China(Grant No.U23A20561)the Jilin University High-level Innovation Team Foundation(Grant No.2021TD–05)the Shanghai Synchrotron Radiation Facility(Grant Nos.2024-SSRF-PT-510031 and 505511).
文摘The ability to generate high pressures in a large-volume press(LVP)is crucial for the study of matter under extreme conditions.Here,we have achieved ultrahigh pressures of and 50 GPa,respectively,at room temperature and a high temperature of 1900 K∼60within a millimeter-sized sample volume in a Kawai-type LVP(KLVP)using hard tungsten carbide(WC)and newly designed assem-blies.The introduction of electroconductive polycrystalline boron-doped diamond and dense alumina wrapped with Cu foils into a large conventional cell assembly enables the detection of resistance variations in the Fe_(2)O_(3) pressure standard upon compression.The efficiency of pressure generation in the newly developed cell assembly equipped with conventional ZK10F WC anvils is significantly higher than that of conventional assemblies with some ultrahard or tapered WC anvils.Our study has enabled the routine gener-ation of pressures exceeding 50 GPa within a millimeter-sized sample chamber that have been inaccessible with traditional KLVPs.This advance in high-pressure technology not only breaks a record for pressure generation in traditional KLVPs,but also opens up new avenues for exploration of the properties of the Earth’s deep interior and for the synthesis of novel materials at extreme high pressures.
基金supported by the National Key Research and Development Project(No.2023YFA1600082)the National Natural Science Foundation of China(Nos.U2141207,52001083,52171111)+3 种基金Natural Science Foundation of Heilongjiang(No.YQ2023E026)the Fundamental Research Funds for the Central Universities(No.3072022JIP1002)Key Laboratory Found of the Ministry of Industry and Information Technology(No.GXB202201)Youth Talent Project of China National Nuclear Corporation(No.CNNC2021YTEP-HEU01).
文摘How to achieve high-entropy alloys(HEAs)with ultrahigh strength and ductility is a challenging issue.Precipitation strengthening is one of the methods to significantly enhance strength,but unfortunately,ductility will be lost.To overcome the strength-ductility trade-off,the strategy of this study is to induce the formation of high-density nanoprecipitates through dual aging(DA),triggering multiple deformation mechanisms,to obtain HEAs with ultrahigh strength and ductility.First,the effect of precold deformation on precipitation behavior was studied using Ni_(35)(CoFe)_(55)V_(5)Nb_(5)(at.%)HEAas the object.The results reveal that the activation energy of recrystallization is 112.2 kJ/mol.As the precold-deformation amount increases from 15%to 65%,the activation energy of precipitation gradually decreases from 178.8 to 159.7 kJ/mol.The precipitation time shortens,the size of the nanoprecipitate decreases,and the density increases.Subsequently,the thermal treatment parameters were optimized,and the DA process was customized based on the effect of precold deformation on precipitation behavior.High-density L1_(2) nanoprecipitates(~3.21×10^(25) m^(-3))were induced in the 65% precold-deformed HEA,which led to the simultaneous formation of twins and stacking fault(SF)networks during deformation.The yield strength(YS),ultimate tensile strength,and ductility of the DA-HEA are~2.0 GPa,~2.2 GPa,and~12.3%,respectively.Compared with the solid solution HEA,the YS of the DA-HEA increased by 1,657 MPa,possessing an astonishing increase of~440%.The high YS stems from the precipitation strengthening contributed by the L1_(2) nanoprecipitates and the dislocation strengthening contributed by precold deformation.The synergistically enhanced ductility stems from the high strain-hardening ability under the dual support of twinning-induced plasticity and SF-induced plasticity.
基金supported by the National Key Research and Development Program of China(2022YFB3706600 and 2023YFA1406200)the National Natural Science Founda-tion of China(42272041,52302043,12304015,41902034,and 12011530063)+1 种基金the Jilin University High-level Innovation Team Foundation,China(2021TD-05)the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction(2021FGWCXNLJSKJ01).
文摘Ultrahigh pressure generation at high temperatures is technologically challenging for large sample volumes.In this study,we successfully generated pressures of 37.3-40.4 GPa at 1900-2100 K in a Walker-type large-volume press(LVP).Expansion of the pressure range at high temperatures was achieved by adapting newly designed ZK01F tungsten carbide(WC)anvils with tapered surfaces and using cell assemblies with an^(-1) mm^(3) sample volume and hard materials,as well as by applying certain adjustments to the apparatus.The pressure efficiencies of the different types of WC anvils and cell assemblies were also studied.Using the above-mentioned techniques,we successfully synthesized and characterized bulk samples of nearly pure sp3-hybridized ultrahard amorphous carbon,core-shell nanocrystals with high Néel temperatures,as well as large-sized single crystals of lower-mantle minerals.The developed LVP techniques presented here could enable the exploration of the chemical and physical properties of novel materials and Earth’s interior.
基金financially supported by the Fundamental Research Program of the Russian Academy of Sciences for the Semenov Research Center of Chemical Physics,Russian Academy of Sciences。
文摘Single-step ethylene polymerization over a binary catalyst,including zirconocene precatalysts of various designs,has been studied to obtain polymer compositions based on ultrahigh-molecular-weight polyethylene(UHMWPE)and low-molecular-weight HDPE(LMWPE)directly in synthesis.Zirconocenes rac-(CH_(3))_(2)Silnd_(2)ZrCl_(2)(Zr-1)and rac-(C_(6)H_(10))CplndZrCl_(2)(Zr-2)activated with methylaluminoxane(MAO)were used as the components of the binary catalyst.It has been shown that the use of Zr-1/MAO and Zr-2/MAO in ethylene polymerization at 30℃leads to the production of UHMWPE with Mw=1000 kg-mol^(-1)and LMWPE with Mw=18 kg·mol^(-1),respectively.Reactor polymer compositions(RPC)with LMWPE fraction contents ranging from 9 wt%to 42 wt%were obtained when a molar fraction of Zr-2 in the binary catalyst(Zr-1+Zr-2)/MAO va ried in the range from 0.3 to 0.85.A study of the molecular weight characteristics of RPC showed that it has a wide bimodal molecular weight distribution(MWD)and includes UHMWPE(Mw=1000 kg·mol^(-1))and LMWPE(Mw=18 kg·mol^(-1))fractions.The degree of crystallinity of the polymer products was determined using the DSC method.The tensile properties and melt indices of the materials were studied depending on the LMWPE fraction content in the polymer composition.UHMWPE/LMWPE compositions with high tensile properties and fluidity at a load of 5 kg were obtained.
文摘This study deals with the development of a 780-MPa-class hot-rolled advanced high-strength steel(AHSS)with an ultrahigh elongation at break of approximately 30%and strength-ductility product exceeding 24 GPa·%,indicating the excellent formability of the newly developed AHSS.The microstructure of the newly developed 780-MPa-class AHSS consists mainly of the triplex phase of ferrite,bainite,and retained austenite with a volume fraction of 10%±2%.The stability of the retained austenite in the newly developed AHSS is much higher than that of conventional transformation-induced plasticity steels,in which the retained austenite is prone to transformation into martensite under deformation.At a pre-strain lower than 1.2%,the volume fraction of the retained austenite and the elongation at break of the present 780-MPa-class AHSS remain almost unchanged,showing a high tolerance in the process window during leveling or straightening.Therefore,the present 780-MPa-class AHSS is particularly suitable for the production of components with complex shapes.
基金supported by the Key Program of the National Natural Science Foundation of China(No.52032003)the Major Program of the National Natural Science Foundation of China(No.52293372)+2 种基金the National Natural Science Foundation of China(No.51972082)the National Natural Science Foundation of China(No.52102093)the National Natural Science Foundation of China(No.52172041)and the science foundation of national key laboratory of science and technology on advanced composites in special environments.
文摘The current generation of ultrahigh temperature ceramic precursors typically encounters obstacles in achieving high ceramic yields(<40 wt.%)due to the challenges in integrating significant amounts of boron,which hampers their conversion into boride-based ultrahigh temperature ceramics.To tackle these challenges,a serious of pioneering liquid multi-component hafnium-containing ceramic SiHfCB precursors(with different Hf/Si ratios)have been developed.These novel precursors are featured with stable molec-ular structure and high ceramic yield which were successfully created through a novel one-pot polymer-ization process.They present in liquid form and their structure is characterized by C-C bonds forming its main chain with branched chains of O-Si-O,Si-O-Hf,Si-O-B,and B-O-Hf which have untapped advantages including uniform component dispersion,and excellent fluidity.The ceramic yield of SiHfCB precursor with Hf/Si of 0.2 is remarkably up to 68.6 wt.%at 1500℃,and their Hf content exceeded 50 wt.%.Of particular interest,the pyrolyzed product HfB_(2)-SiC nanopowders derived from the SiHfCB precursor with Hf/Si of 0.2,consist of nanopowders in the 40-60 nm range with a density of 5.23 g cm^(−3).Remarkably,this material demonstrates exceptional performance in ultrahigh temperature oxygen-containing environ-ments at 2500℃,showing near-zero ablation with a linear ablation rate of just 2.5×10^(−4) mm s^(−1).Post-ablation analysis of the microstructure reveals that the formation of a lava-like HfO_(2) and HfO_(2)-SiO_(2) oxide layer effectively blocks oxygen penetration and provides excellent oxidation resistance.The inno-vative SiHfCB hafnium-containing ceramic precursor offers a groundbreaking solution for the preparation of lightweight ultrahigh-temperature ceramics.This development is poised to provide robust technical support for the use of ultrahigh temperature ceramics in non-ablative thermal protective systems,partic-ularly in the construction of hypersonic vehicles,where ultrahigh temperature resilience is crucial.
基金the financial support from the National Natural Science Foundation of China(No.12164004)the Jiangxi Provincial Natural Science Foundation(Nos.20242BAB25210,20232BCJ25067,20232BAB214004 and 20224BAB204029)+2 种基金the Foundation of Education Department of Jiangxi Provincial(Nos.GJJ2201247 and GJJ211436)the Young and Middle-aged Teachers Education Scientific Research Project of Fujian Province(No.JAT231008)supported by Sinoma Institute of Materials Research(Guang Zhou)Co.,Ltd(SIMR).
文摘Mg-1.2Y-1.2Ni(at.%)alloy was extruded at 400℃with an extrusion ratio of 16:1 and different rates from 1 to 6 mm/s.The effect of extrusion rate on microstructure and mechanical properties of the Mg-1.2Y-1.2Ni alloy was systematically investigated.With the increase of extrusion rate,the average recrystallized grain size of Mg-1.2Y-1.2Ni alloy and mean particle diameter of Mg2Ni phase were increased,while the density of geometrically necessary dislocation and the intensity of the basal texture were decreased.When extrusion rate increases from 1 to 6 mm/s,the tensile yield strength(TYS)of asextruded Mg-1.2Y-1.2Ni alloy decreases from 501 to 281 MPa,while the elongation to failure increases from 1.5%to 6.2%.The Mg-1.2Y-1.2Ni alloy extruded at 3 mm/s obtained TYS of 421 MPa,the ultimate tensile strength(UTS)of 440 MPa and elongation to failure of 2.6%,respectively,exhibiting comprehensive mechanical properties with relatively good plasticity and ultrahigh strength.The ultrahigh TYS of 501 and 421 MPa was mainly due to the strengthening from ultrafine recrystallized grains,high volume fraction long period stacking ordered(LPSO)phases and high density dislocations.
文摘In this study we theoretically demonstrate ultrahigh-resolution two-dimensional atomic localization within a three-levelλ-type atomic medium via superposition of asymmetric and symmetric standing wave fields.Our analysis provides an understanding of the precise spatial localization of atomic positions at the atomic level,utilizing advanced theoretical approaches and principles of quantum mechanics.The dynamical behavior of a three-level atomic system is thoroughly analyzed using the density matrix formalism within the realm of quantum mechanics.A theoretical approach is constructed to describe the interaction between the system and external fields,specifically a control field and a probe field.The absorption spectrum of the probe field is thoroughly examined to clarify the spatial localization of the atom within the proposed configuration.A theoretical investigation found that symmetric and asymmetric superposition phenomena significantly influence the localized peaks within a two-dimensional spatial domain.Specifically,the emergence of one and two sharp localized peaks was observed within a one-wavelength domain.We observed notable influences of the intensity of the control field,probe field detuning and decay rates on atomic localization.Ultimately,we have achieved an unprecedented level of ultrahigh resolution and precision in localizing an atom within an area smaller thanλ/35×λ/35.These findings hold promise for potential applications in fields such as Bose-Einstein condensation,nanolithography,laser cooling,trapping of neutral atoms and the measurement of center-of-mass wave functions.
基金The National Natural Science Foundation of China(No.52379124)the National Key Research and Development Program of China(No.2021YFB2600200).
文摘To investigate the effects of the spraying process and different fibers on the mechanical properties and failure patterns of ultrahigh performance concrete(UHPC),three types of fibers were used.These fibers were formed using both spraying and molding methods.Uniaxial compression tests were conducted,and two nondestructive monitoring techniques,acoustic emission(AE)and digital image correlation,were employed to monitor the uniaxial compression tests.The results indicated that the compressive strength of UHPC with single steel fibers and hybrid fibers increased by about 19%and 14%compared with those of UHPC with polyoxymethylene fibers.In comparison with molded UHPC,sprayed UHPC showed a slight improvement in compressive strength.Specimens containing steel fibers exhibited better post-cracking ductility,whereas those with only polyoxymethylene fibers displayed a certain degree of brittle failure.In sprayed UHPC,the onset of significant internal damage was delayed,which was related to the redistribution of internal fibers.The failure of UHPC was characterized by primary tensile cracks,supplemented by shear cracks.The spraying process can better restrict the development of tensile cracks in UHPC.Sprayed UHPC typically exhibited multiple crack developments leading to failure,whereas molded UHPC generally failed in the form of a single main crack penetrating the specimen.The addition of steel fibers delayed the occurrence of local stress concentration zones,aligning well with AE monitoring data.
文摘High-loading Pt/C catalysts play an important role in the fabrication of membrane electrode assemblies with thin catalytic layer,which enhance mass transport and maintain the balance of water and heat.Unfortunately,as the loading increases,the agglomeration and growth of Pt nanoparticles(NPs)occur,causing unsatisfactory performance.Here,we present an efficient method for preparing of highly dispersed and small-sized Pt/C catalysts with Pt loadings varying from 39.01 wt%to 66.48 wt%through the high-temperature shock technique.The high density and ultrafine(~2.5 nm)Pt NPs are successfully anchored onto Vulcan XC-72R carbon black without the use of additional capping agents or surfactants.The modified carbon supports enhance the affinity for Pt precursors,contributing to loading efficiencies of 95%or more,while also providing abundant sites for the nucleation and fixation of Pt NPs,thus preventing agglomeration.In the context of the hydrogen evolution reaction in acidic media,the as-synthesized high-loading Pt/C catalysts show remarkable activity and stability,outperforming the state-of-the-art commercial Pt/C.This is mainly because the combined effects of ultrasmall and uniform Pt NPs,optimized electronic structure of Pt site,superhydrophilicity and effective anchoring of Pt NPs.The polymer electrolyte membrane electrolyzer integrated with Pt60/OX72R and commercial IrO2 reaches 1 A cm^(-2)at 1.77 V and operates stably for 120 hours with a negligible voltage decay.This new strategy is fast,scalable and cost-effective for large-scale production of metal-supported catalysts,especially for the high-loading ones.
基金financially supported by the National Natural Science Foundation of China(Nos.52071073,52177208,and 52171202)the Hebei Province“333 talent project”,China(No.C20221012)+2 种基金the Science and Technology Project of Hebei Education Department,China(No.BJK2023005)the Fundamental Research Funds for the Central Universities(No.2024GFZD002)the Natural Science Foundation of Hebei Province,China(No.E2024501015).
文摘To satisfy the demand for low-cost and long-range electric vehicles by the market,the commercialization of ultrahigh nickel cathode materials with high specific capacity and a wide electrochemical window is expected to facilitate the development of lithium-ion batteries.However,residual lithium compounds with a strong alkalinity cause difficulty in cathode preparation and indirectly affect the cycling stability of the cathode during cycling.Given the inevitability of the formation of residual alkali,a lithium-borate coating with an adjustable thickness was selected by controlling the formation of residual alkali.An additional lithium source was added to the synthesis process and converted into a thicker and more complete coating structure,which rendered the cathode with better cycle stability.As a res-ult,the percentage of peak area of lithium carbonate on the surface-modified cathode surface exhibited a considerable decrease from 38.07%to 28.26%.The etching results show the formation of a uniform coating layer after boric acid treatment.The initial capacity of the treated cathode was 214.6 mAh·g^(-1) owing to the favorable effect of the surface coating,and the capacity retention raised from 59.35%to 90.75%and from 63.81%to 91.94%after cycling at 0.5 and 1 C current densities,respectively.The boric acid coating-modified strategy proposed in this paper considerably ameliorates the cycling stabilization of cathodes and provides superior commercial application value for ultrahigh nickel cathode materials.
基金by the Natural Science Foundation of Shandong Province,China(No.ZR2023QE159).
文摘This paper investigates interfacial heat transfer characteristics in amulti-layer structure under ultra-high heat flux conditions,focusing on thermal contact resistance(TCR)between adjacent layers.Athree-layer computational model with dual rough interfaces was developed to systematically analyze the synergistic effects of interfacial pressure,surface emissivity,and thermal interface materials(TIMs).Surface reconstruction using experimental measurement data generated two representative roughness models to quantify the impact of surface roughness on heat dissipation.Numerical simulations demonstrate that the absence of TIMs leads to insufficient thermal dissipation capacity under ultra-high heat flux conditions.Compared to TIMapplication,merely increasing the convective heat transfer coefficient shows limited effectiveness in enhancing heat dissipation efficiency.
基金funding from the Australian Research Council(ARC Discovery Project,Nos.DP200101408 and DP230100183).
文摘1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineering[1].At present,NM alloys can be produced by several synthesis methods,including sintering of nanocomposites[2,3],physical or chemical vapour deposition(PVD or CVD)[4],crystallization of metallic glasses[5],and severe plastic deforma-tion(SPD)[6-8].However,industry applications of bulk NM alloys produced by these methods are significantly restricted by their ge-ometrical and size limitations.Thus,the fabrication of large-scale NM alloys remains challenging.
文摘This paper presents our endeavors in developing the large-scale, ultra-high-resolution E3SM Land Model (uELM), specifically designed for exascale computers furnished with accelerators such as Nvidia GPUs. The uELM is a sophisticated code that substantially relies on High-Performance Computing (HPC) environments, necessitating particular machine and software configurations. To facilitate community-based uELM developments employing GPUs, we have created a portable, standalone software environment preconfigured with uELM input datasets, simulation cases, and source code. This environment, utilizing Docker, encompasses all essential code, libraries, and system software for uELM development on GPUs. It also features a functional unit test framework and an offline model testbed for comprehensive numerical experiments. From a technical perspective, the paper discusses GPU-ready container generations, uELM code management, and input data distribution across computational platforms. Lastly, the paper demonstrates the use of environment for functional unit testing, end-to-end simulation on CPUs and GPUs, and collaborative code development.
基金Projects(2010SK3172,2015JC3005)supported by the Key Program of Science and Technology Project of Hunan Province,China
文摘Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders.
基金Project(51071124)supported by the National Natural Science Foundation of ChinaProject(CX200605)supported by the Doctorate Foundation of Northwestern Polytechnical University,ChinaProject(20096102110012)supported by a Special Research Fund for Doctoral Disciplines in Colleges and Universities of the Ministry of Education,China
文摘Directionally solidified (DS) specimens of Nb-Ti-Si based ultrahigh temperature alloy were heat-treated at (1 500 ℃, 50 h) and (1 500 ℃, 50 h) + (1 100 ℃, 50 h), respectively. The results show that the microstructures become uniform, the long and big primary (Nb,X)sSi3 (X represents Ti and Hf elements) plates in the DS specimens are broken into small ones, and the eutectic cells lose their lamellar morphology and their interfaces become blurry after heat-treatment. Meanwhile, the (Nb,X)sSi3 slices in the eutectic cells of the DS specimens coarsen obviously after heat-treatment. Homogenizing and aging treatments could effectively eliminate elemental microsegregation, and the segregation ratios of all elements in niobium solid solution (Nbss) in different regions tend to 1. After heat-treatment, the microhardness of retained eutectic cells increases evidently, and the maximum value reaches HV1 404.57 for the specimen directionally solidified with a withdrawing rate of 100 μm/s and then heat-treated at (1 500 ℃, 50 h) + (1 100 ℃, 50 h), which is 72.8 % higher than that under DS condition.
基金Project (51071124) supported by the National Natural Science Foundation of ChinaProject (20096102110012) supported by the Ministry of Education, China Project (07-TP-2008) supported by the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘To investigate the effects of homogenizing and aging treatments on the microstructure of an Nb-Ti-Cr-Si based ultrahigh temperature alloy,coupons were homogenized at 1 200-1 500 °C for 24 h,and then aged at 1 000 °C for 24 h.The results show that the heat-treated alloy is composed of Nb solid solution(Nbss),(Nb,X)5Si3 and Cr2Nb phases.With the increase of heat-treatment temperature,previous Nbss dendrites transformed into equiaxed grains,and petal-like Nbss/(Nb,X)5Si3 eutectic colonies gradually changed into small(Nb,X)5Si3 particles distributed in Nbss matrix.A drastic change occurred in the morphology of the Laves phase after homogenizing treatment.Previously coarse Cr2Nb blocks dissolved during homogenizing at temperature above 1 300 °C,and then much finer and crowded Cr2Nb flakes precipitated in the Nbss matrix in cooling.Aging treatment at 1 000 °C for 24 h led to further precipitation of fine particles of Laves phase in Nbss matrix and made the difference in concentrations of Ti,Hf and Al in Nbss,(Nb,X)5Si3 and Cr2Nb phases reduced.
基金the National Natural Science Foundation of China(No.50171053) the Aeronautical Basic Science Foundation of China(No.0DG53054).
文摘The influence of double aging on the microstructure and mechanical properties of ultrahigh strength steel Aermet 100 was analyzed. Under the double aging, there is no apparent decrease in the strength of steel. However, the impact fatigue life can be prolonged by 35.5% and dynamic fracture toughness be raised by 22.6% respectively, as compared with the normal aging. Based on the observation of microscopic structure, the physical mechanism of the prolongation of impact fatigue life and the enhancement of stability of the reverted austenite, AR, is analyzed further. The results show that this new technique is a breakthrough of combination optimization between strength and toughness for Aermet 100 steel. In the light of the current understanding on this subject, the volume fracture of soften and tough AR formed in process of heat preservation at higher temperature of double aging increases drastically. Moreover, during the treatment of lower temperature of double aging, the carbon separating from the martensitic ferrite will diffuse into AR, resulting that the martensitic brittleness decreases and the stability of AR increases.
基金supported by the Project of Scientific and Technical Supporting Program of China during the 11th Five-Year Plan(No.2006BAE03A06)
文摘Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.