In this work,an ultrafine-grained high-Nb-TiAl alloy with a nominal composition of Ti-45Al-8Nb-0.2W-0.2B(at%)was prepared by cryomilling and subsequent spark plasma sintering(SPS)technique.The chemical composition,par...In this work,an ultrafine-grained high-Nb-TiAl alloy with a nominal composition of Ti-45Al-8Nb-0.2W-0.2B(at%)was prepared by cryomilling and subsequent spark plasma sintering(SPS)technique.The chemical composition,particle size,morphology and crystallite size of cryomilled powder were studied.It is found that cryomilling can effectively reduce the particle size and enhance grain refinement.The ingots sintered at 900 and 1000℃ show an equiaxed near-γmicrostructure with grain sizes<700 nm,while the sample sintered at 1100℃exhibits duplex microstructure.Especially,the one sintered at 1000℃ has excellent mechanical properties,whose compression yield strength,fracture strength,bending strength and plastic strain achieve 1310,2174,578 MPa and 16.8%,respectively.The reasons for the effect of cryomilling and the mechanical behavior of sintered ingots were discussed.It is suggested that cryomilling in combination with SPS is an effective way to synthesize high-NbTiAl alloy with ultrafine-grained structure.展开更多
304 austenitic stainless steel was cold rolled in the range of 20%-80%reductions and then annealed at 700-900°C for 60 sto obtain nano/ultrafine-grained(NG/UFG)structure.Transmission electron microscopy,electro...304 austenitic stainless steel was cold rolled in the range of 20%-80%reductions and then annealed at 700-900°C for 60 sto obtain nano/ultrafine-grained(NG/UFG)structure.Transmission electron microscopy,electron backscatter diffraction and X-ray diffraction were used to characterize the resulting microstructures.The results showed that with the increase of cold reduction,the content of martensite was increased.The steel performed work hardening during cold-working owing to the occurrence of strain induced martensite which nucleated in single shear bands.Further rolling broke up the lath-type martensite into dislocation-cell type martensite because of the formation of slip bands.Samples annealed at 800-960°C for 60 swere of NG/UFG structure with different percentage of nanocrystalline(60-100 nm)and ultrafine(100-500 nm)grains,submicron size(500-1000 nm)grains and micron size(〉1000 nm)grains.The value of the Gibbs free energy exhibited that the reversion mechanism of the reversion process was shear controlled by the annealing temperature.For a certain annealing time during the reversion process,austenite nucleated first on dislocation-cell type martensite and the grains grew up subsequently and eventually to be micrometer/submicrometer grains,while the nucleation of austenite on lath-type martensite occurred later resulting in nanocrystalline/ultrafine grains.The existence of the NG/UFG structure led to a higher strength and toughness during tensile test.展开更多
Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bott...Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bottleneck in achieving high mechanical performance. Creating a large number of clean grain boundaries in refractory high-entropy alloys is a challenge. In this study, an ultrafine-grained (UFG) NbMoTaW alloy with high grain-boundary cohesion was prepared by powder metallurgy, taking advantages of rapid hot-pressing sintering and full-process inert atmosphere protection from powder synthesis to sintering. By oxygen control and an increase in the proportion of grain boundaries, the segregation of oxygen and formation of oxides at grain boundaries were strongly mitigated, thus the intrinsic high cohesion of the interfaces was preserved. Compared to the coarse-grained alloys prepared by arc-melting and those sintered by traditional powder metallurgy methods, the UFG NbMoTaW alloy demonstrated simultaneously increased strength and plasticity at ambient temperature. The highly cohesive grain boundaries not only reduce brittle fractures effectively but also promote intragranular deformation. Consequently, the UFG NbMoTaW alloy achieved a high yield strength even at elevated temperatures, with a remarkable performance of 1117 MPa at 1200 ℃. This work provides a feasible solution for producing refractory high-entropy alloys with low impurity content, refined microstructure, and excellent mechanical performance.展开更多
Multiple laser shock processing (LSP) impacts on microstructures and mechanical properties were investigated through morphological determinations and hardness testing. Microscopic results show that without equal cha...Multiple laser shock processing (LSP) impacts on microstructures and mechanical properties were investigated through morphological determinations and hardness testing. Microscopic results show that without equal channel angular pressing (ECAP), the LSP-treated lamellar pearlite was transferred to irregular ferrite matrix and incompletely broken cementite particles. With ECAP, LSP leads to refinements of the equiaxed ferrite grain in ultrafine-grained microduplex structure from 400 to 150 nm, and the completely spheroidized cementite particles from 150 to 100 nm. Consequentially, enhancements of mechanical properties were found in strength, microhardness and elongations of samples consisting of lamellar pearlite and ultrafine-grained microduplex structure. After LSP, a mixture of quasi-cleavage and ductile fracture was formed, different from the typical quasi-cleavage fracture from the original lamellar pearlite and the ductile fracture of the microduplex structure.展开更多
A high-Mg2Si content Al alloy was extruded by equal channel angular pressing(ECAP) for 8 passes at 250 ℃ and an ultrafine-grained structure with an average grain size of about 1.5 μm was achieved.The coarse skelet...A high-Mg2Si content Al alloy was extruded by equal channel angular pressing(ECAP) for 8 passes at 250 ℃ and an ultrafine-grained structure with an average grain size of about 1.5 μm was achieved.The coarse skeleton-shaped Mg2Si phase presenting in the as-cast alloy are significantly fragmented into fine rod-shaped as well as equiaxed particles mostly less than about 230 nm and become relatively dispersed.The tensile strength 192.8 MPa and the elongation up to 31.3% at ambient temperature are attained in the 8-pass ECAPed alloy versus 163.3 MPa and 9.1% in the as-cast alloy.High-temperature creep test at 250 ℃ reveals that the ECAPed sample exhibits a high elongation close to 100% at a relatively high creep rate 7.64×10-5 s-1,compared to the elongation 56% at a low strain rate 1.74×10-7 s-1 in the as-cast alloy.展开更多
The results of measurements of the strength characteristics-Hugoniot elastic limit and spall strength of aluminum and aluminum alloys in different structural states under shock wave loading are presented.Single-crysta...The results of measurements of the strength characteristics-Hugoniot elastic limit and spall strength of aluminum and aluminum alloys in different structural states under shock wave loading are presented.Single-crystals and polycrystalline technical grade aluminumА1013 and aluminum alloysА2024,АА6063Т6,А1421,A7,А7075,А3003,A5083,АА1070 in the initial coarse-grained state and ultrafine-grained or nanocrystalline structural state were investigated.The refinement of the grain structure was carried out by different methods of severe plastic deformation such as Equal Chanel Angular Pressing,Dynamic Channel Angular Pressing,High-Pressure Torsion and Accumulative Roll-Bonding.The strength characteristics of shock-loaded samples in different structural states were obtained from the analysis of the evolution of the free surface velocity histories recorded by means of laser Doppler velocimeter VISAR.The strain rates before spall fracture of the samples were in the range of 10^(4)-10^(5 )s^(-1),the maximum pressure of shock compression did not exceed 7 GPa.The results of these studies clearly demonstrate the influence of structural factors on the resistance to high-rate deformation and dynamic fracture,and it is much less than under the static and quasi-static loading.展开更多
An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the G...An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.展开更多
Micron TiNi alloy blocks were fabricated at high temperature by equal channel angular extrusion (ECAE) using hotforged Ti-50.3at%Ni alloy as the raw material and the effects of deformation temperature and postdeform...Micron TiNi alloy blocks were fabricated at high temperature by equal channel angular extrusion (ECAE) using hotforged Ti-50.3at%Ni alloy as the raw material and the effects of deformation temperature and postdeformation annealing on the severely deformed TiNi alloy by ECAE were investigated. The results show that the TiNi alloy processed by ECAE undergoes severe plastic deformation, and lowering the deformation temperature and increasing the number of extrusions contribute to grain refinement. When the annealing temperature is below 873 K, static recovery is the main restoration process; when the temperature rises to 973 K, static recrystallization occurs. It is found that fine particles are precipitated when the TiNi alloy processed by ECAE is annealed at 773 K.展开更多
基金financially supported by the National Natural Science Foundation of China(No.11475118)。
文摘In this work,an ultrafine-grained high-Nb-TiAl alloy with a nominal composition of Ti-45Al-8Nb-0.2W-0.2B(at%)was prepared by cryomilling and subsequent spark plasma sintering(SPS)technique.The chemical composition,particle size,morphology and crystallite size of cryomilled powder were studied.It is found that cryomilling can effectively reduce the particle size and enhance grain refinement.The ingots sintered at 900 and 1000℃ show an equiaxed near-γmicrostructure with grain sizes<700 nm,while the sample sintered at 1100℃exhibits duplex microstructure.Especially,the one sintered at 1000℃ has excellent mechanical properties,whose compression yield strength,fracture strength,bending strength and plastic strain achieve 1310,2174,578 MPa and 16.8%,respectively.The reasons for the effect of cryomilling and the mechanical behavior of sintered ingots were discussed.It is suggested that cryomilling in combination with SPS is an effective way to synthesize high-NbTiAl alloy with ultrafine-grained structure.
基金supported by the National Natural Science Foundation of China(Grant No.51474031)
文摘304 austenitic stainless steel was cold rolled in the range of 20%-80%reductions and then annealed at 700-900°C for 60 sto obtain nano/ultrafine-grained(NG/UFG)structure.Transmission electron microscopy,electron backscatter diffraction and X-ray diffraction were used to characterize the resulting microstructures.The results showed that with the increase of cold reduction,the content of martensite was increased.The steel performed work hardening during cold-working owing to the occurrence of strain induced martensite which nucleated in single shear bands.Further rolling broke up the lath-type martensite into dislocation-cell type martensite because of the formation of slip bands.Samples annealed at 800-960°C for 60 swere of NG/UFG structure with different percentage of nanocrystalline(60-100 nm)and ultrafine(100-500 nm)grains,submicron size(500-1000 nm)grains and micron size(〉1000 nm)grains.The value of the Gibbs free energy exhibited that the reversion mechanism of the reversion process was shear controlled by the annealing temperature.For a certain annealing time during the reversion process,austenite nucleated first on dislocation-cell type martensite and the grains grew up subsequently and eventually to be micrometer/submicrometer grains,while the nucleation of austenite on lath-type martensite occurred later resulting in nanocrystalline/ultrafine grains.The existence of the NG/UFG structure led to a higher strength and toughness during tensile test.
基金supported by the National Natural Science Foundation of China(Nos.52371128,52304378,52101031 and 92163107).
文摘Grain boundary engineering plays a significant role in the improvement of strength and plasticity of alloys. However, in refractory high-entropy alloys, the susceptibility of grain boundaries to oxygen presents a bottleneck in achieving high mechanical performance. Creating a large number of clean grain boundaries in refractory high-entropy alloys is a challenge. In this study, an ultrafine-grained (UFG) NbMoTaW alloy with high grain-boundary cohesion was prepared by powder metallurgy, taking advantages of rapid hot-pressing sintering and full-process inert atmosphere protection from powder synthesis to sintering. By oxygen control and an increase in the proportion of grain boundaries, the segregation of oxygen and formation of oxides at grain boundaries were strongly mitigated, thus the intrinsic high cohesion of the interfaces was preserved. Compared to the coarse-grained alloys prepared by arc-melting and those sintered by traditional powder metallurgy methods, the UFG NbMoTaW alloy demonstrated simultaneously increased strength and plasticity at ambient temperature. The highly cohesive grain boundaries not only reduce brittle fractures effectively but also promote intragranular deformation. Consequently, the UFG NbMoTaW alloy achieved a high yield strength even at elevated temperatures, with a remarkable performance of 1117 MPa at 1200 ℃. This work provides a feasible solution for producing refractory high-entropy alloys with low impurity content, refined microstructure, and excellent mechanical performance.
文摘Multiple laser shock processing (LSP) impacts on microstructures and mechanical properties were investigated through morphological determinations and hardness testing. Microscopic results show that without equal channel angular pressing (ECAP), the LSP-treated lamellar pearlite was transferred to irregular ferrite matrix and incompletely broken cementite particles. With ECAP, LSP leads to refinements of the equiaxed ferrite grain in ultrafine-grained microduplex structure from 400 to 150 nm, and the completely spheroidized cementite particles from 150 to 100 nm. Consequentially, enhancements of mechanical properties were found in strength, microhardness and elongations of samples consisting of lamellar pearlite and ultrafine-grained microduplex structure. After LSP, a mixture of quasi-cleavage and ductile fracture was formed, different from the typical quasi-cleavage fracture from the original lamellar pearlite and the ductile fracture of the microduplex structure.
基金Funded by the Specialized Fund for the Innovation of College Student of Taiyuan City (No. 08122067,07010727)the Natural Science Foundation of Shanxi Province, China (No. 2006011051)Shanxi Research Fund forReturned Scholars(No.2007-25)
文摘A high-Mg2Si content Al alloy was extruded by equal channel angular pressing(ECAP) for 8 passes at 250 ℃ and an ultrafine-grained structure with an average grain size of about 1.5 μm was achieved.The coarse skeleton-shaped Mg2Si phase presenting in the as-cast alloy are significantly fragmented into fine rod-shaped as well as equiaxed particles mostly less than about 230 nm and become relatively dispersed.The tensile strength 192.8 MPa and the elongation up to 31.3% at ambient temperature are attained in the 8-pass ECAPed alloy versus 163.3 MPa and 9.1% in the as-cast alloy.High-temperature creep test at 250 ℃ reveals that the ECAPed sample exhibits a high elongation close to 100% at a relatively high creep rate 7.64×10-5 s-1,compared to the elongation 56% at a low strain rate 1.74×10-7 s-1 in the as-cast alloy.
基金This work was carried out within the state tasks No.0089-2014-0016it was also supported by the Program No.11P of basic researches of Presidium of Russian Academy of Sciences“Condensed matter and plasma at high energy densities.Physics and mechanics of deformation and fracture with extremely high rates”.
文摘The results of measurements of the strength characteristics-Hugoniot elastic limit and spall strength of aluminum and aluminum alloys in different structural states under shock wave loading are presented.Single-crystals and polycrystalline technical grade aluminumА1013 and aluminum alloysА2024,АА6063Т6,А1421,A7,А7075,А3003,A5083,АА1070 in the initial coarse-grained state and ultrafine-grained or nanocrystalline structural state were investigated.The refinement of the grain structure was carried out by different methods of severe plastic deformation such as Equal Chanel Angular Pressing,Dynamic Channel Angular Pressing,High-Pressure Torsion and Accumulative Roll-Bonding.The strength characteristics of shock-loaded samples in different structural states were obtained from the analysis of the evolution of the free surface velocity histories recorded by means of laser Doppler velocimeter VISAR.The strain rates before spall fracture of the samples were in the range of 10^(4)-10^(5 )s^(-1),the maximum pressure of shock compression did not exceed 7 GPa.The results of these studies clearly demonstrate the influence of structural factors on the resistance to high-rate deformation and dynamic fracture,and it is much less than under the static and quasi-static loading.
基金financial supports from the National Natural Science Foundation of China(Nos.51161003,51561031)the Natural Science Foundation of Guangxi,China(No.2018GXNSFAA138150)。
文摘An energy model for the structure transformation of pile-ups of grain boundary dislocations(GBD)at the triple-junction of the grain boundary of ultrafine-grain materials was proposed.The energy of the pile-up of the GBD in the system was calculated by the energy model,the critical geometric and mechanical conditions for the structure transformation of head dislocation of the pile-up were analyzed,and the influence of the number density of the dislocations and the angle between Burgers vectors of two decomposed dislocations on the transformation mode of head dislocation was discussed.The results show when the GBD is accumulated at triple junction,the head dislocation of the GBD is decomposed into two Burgers vectors of these dislocations unless the angle between the two vectors is less than 90°,and the increase of applied external stress can reduce the energy barrier of the dislocation decomposition.The mechanism that the ultrafine-grained metal material has both high strength and plasticity owing to the structure transformation of the pile-up of the GBD at the triple junction of the grain boundary is revealed.
基金This work was financially supported by the National Natural Science Foundation of China (No.A50071034)
文摘Micron TiNi alloy blocks were fabricated at high temperature by equal channel angular extrusion (ECAE) using hotforged Ti-50.3at%Ni alloy as the raw material and the effects of deformation temperature and postdeformation annealing on the severely deformed TiNi alloy by ECAE were investigated. The results show that the TiNi alloy processed by ECAE undergoes severe plastic deformation, and lowering the deformation temperature and increasing the number of extrusions contribute to grain refinement. When the annealing temperature is below 873 K, static recovery is the main restoration process; when the temperature rises to 973 K, static recrystallization occurs. It is found that fine particles are precipitated when the TiNi alloy processed by ECAE is annealed at 773 K.