Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real a...Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real applications,severe environments occur frequently,such as extremely cold weather.General hydrogels always lack anti-freeze and anti-dehydration abilities.Consequently,the functions of electronic devices based on traditional hydrogels will quickly fail in extreme environments.Therefore,the development of environmentally robust hydrogels that can withstand extremely low temperatures,overcome dehydration,and ensure the stable operation of electronic devices has become increasingly important.Here,we report a kind of graphene oxide(GO)incorporated polyvinyl alcohol-polyacrylamide(PVA-PAAm)double network hydrogel(GPPDhydrogel)which shows excellent anti-freeze ability.The GPPD-hydrogel exhibits not only good flexibility and ultra-high stretchability up to 2,000%,but ensures a high sensitivity when used as the strain sensor at−50°C.More importantly,when serving as the electrode of a sandwich-structural triboelectric nanogenerator(TENG),the GPPD-hydrogel endows the TENG high and stable output performances even under−80°C.Besides,the GPPD-hydrogel is demonstrated long-lasting moisture retention over 100 days.The GPPD-hydrogel provides a reliable and promising candidate for the new generation of wearable electronics.展开更多
While the enhancement of elastomer properties through nanofiller addition has been widely explored,developing high-performance elastomers for electrically insulating electromagnetic interference(EMI)shielding material...While the enhancement of elastomer properties through nanofiller addition has been widely explored,developing high-performance elastomers for electrically insulating electromagnetic interference(EMI)shielding materials using a simple approach remains crucial.In this study,high-performance composite silicone rubber(SR)elastomers were fabricated through a combination of straightforward physical mixing and chemical grafting approach.Specifically,the incorporation of components aluminum trioxide nanoparticles(n-Al_(2)O_(3))and reactive small molecule 2-isocyanoethyl acrylate(ICA)and 2-Amino-4-hydroxy-6-methylpyrimidine(UPY)into SR significantly improved both the mechanical strength and ther-mal resistance of the composites due to the synergistic effects of nanoparticles and hydrogen bonding.In addition,as flexible electronics become more complex and miniaturised,there is an increasing demand for stretchable electrically insulating EMI shielding materials.Liquid metal(LM)with extreme fluidity is ideal for the preparation of stretchable EMI shielding materials.By introducing LM,we prepared a stretchable electrically insulating EMI shielding material with a sandwich structure using a simple mechanical sintering and lamination process,and the EMI shielding properties of the material remained stable before and after stretching.The modified insulating layer has excellent elasticity and thermal stability,which en-sures the normal use of the composite EMI shielding material under high temperatures and mechanical deformation conditions.This research provides valuable insights into the development of shielding materials with high-performance electrical insulation and strain-invariant EMI shielding behavior.展开更多
Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain...Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain while maintaining high performance. Herein, we report an ultra-stretchable wire-shaped supercapacitor based on carbon nanotube@graphene@MnO2 fibers wound around a superelastic core fiber. The supercapacitor can sustain tensile strain up to 850%, which is the highest value reported for this type of device to date, while maintaining stable electrochemical performance. The energy density of the supercapacitor is 3.37 mWh·cm^-3 at a power density of 54.0 mW·cm^-3. The results show that 82% of the specific capacitance is retained after 1,000 stretch-release cycles with strains of 700%, demonstrating the superior durability of the elastic supercapacitor and showcasing its potential application in ultra-stretchable flexible electronics.展开更多
Stretchable,skin-conformal,and self-powered wearable pressure sensors have garnered significant attention for use in human joint bending motion monitoring.Here,a piezo-triboelectric pressure sensor(P-TPS)based on trib...Stretchable,skin-conformal,and self-powered wearable pressure sensors have garnered significant attention for use in human joint bending motion monitoring.Here,a piezo-triboelectric pressure sensor(P-TPS)based on triboelectric nanogenerator and piezoelectric nanogenerator is demonstrated.The P-TPS can generate an enhanced electrical output by coupling the dual-mode triboelectrification and piezoelectric effect.The P-TPS shows high sensitivity(voltage=0.3 V/kPa;current=4.3 nA/kPa;pres-sure range=0-200 kPa),high linearity,and good stability.Furthermore,it demonstrates a wide mea-surement range(0-800 kPa),table frequency response,and fast response time.Additionally,all components of the P-TPS are fabricated using flexible and stretchable materials,affording satisfactory stretchability and excellent skin conformality.Owing to their ability to self-power,they can be attached to the outside of joints to monitor human joint bending movements in real time.Hence,this study provides a novel method of using a stretchable and skin-conformal piezo-triboelectric nanogenerator with high electrical performance as a self-powered pressure sensor,which offers significant potential in personalized recognition,medical research,and human machine interface.展开更多
基金support from the National Natural Science Foundation of China(Nos.22001018,52192610,52173298,and 61904012)the National Key R&D Program of China(No.2021YFA1201603).
文摘Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility,durability of deformation,and good electrical conductivity.However,in real applications,severe environments occur frequently,such as extremely cold weather.General hydrogels always lack anti-freeze and anti-dehydration abilities.Consequently,the functions of electronic devices based on traditional hydrogels will quickly fail in extreme environments.Therefore,the development of environmentally robust hydrogels that can withstand extremely low temperatures,overcome dehydration,and ensure the stable operation of electronic devices has become increasingly important.Here,we report a kind of graphene oxide(GO)incorporated polyvinyl alcohol-polyacrylamide(PVA-PAAm)double network hydrogel(GPPDhydrogel)which shows excellent anti-freeze ability.The GPPD-hydrogel exhibits not only good flexibility and ultra-high stretchability up to 2,000%,but ensures a high sensitivity when used as the strain sensor at−50°C.More importantly,when serving as the electrode of a sandwich-structural triboelectric nanogenerator(TENG),the GPPD-hydrogel endows the TENG high and stable output performances even under−80°C.Besides,the GPPD-hydrogel is demonstrated long-lasting moisture retention over 100 days.The GPPD-hydrogel provides a reliable and promising candidate for the new generation of wearable electronics.
基金the financial support from the Director’s Fund of the Hefei Institute of Materials Research,Chinese Academy of Sciences(Nos.YZJJQY202405 and YZJJ2024QN36).
文摘While the enhancement of elastomer properties through nanofiller addition has been widely explored,developing high-performance elastomers for electrically insulating electromagnetic interference(EMI)shielding materials using a simple approach remains crucial.In this study,high-performance composite silicone rubber(SR)elastomers were fabricated through a combination of straightforward physical mixing and chemical grafting approach.Specifically,the incorporation of components aluminum trioxide nanoparticles(n-Al_(2)O_(3))and reactive small molecule 2-isocyanoethyl acrylate(ICA)and 2-Amino-4-hydroxy-6-methylpyrimidine(UPY)into SR significantly improved both the mechanical strength and ther-mal resistance of the composites due to the synergistic effects of nanoparticles and hydrogen bonding.In addition,as flexible electronics become more complex and miniaturised,there is an increasing demand for stretchable electrically insulating EMI shielding materials.Liquid metal(LM)with extreme fluidity is ideal for the preparation of stretchable EMI shielding materials.By introducing LM,we prepared a stretchable electrically insulating EMI shielding material with a sandwich structure using a simple mechanical sintering and lamination process,and the EMI shielding properties of the material remained stable before and after stretching.The modified insulating layer has excellent elasticity and thermal stability,which en-sures the normal use of the composite EMI shielding material under high temperatures and mechanical deformation conditions.This research provides valuable insights into the development of shielding materials with high-performance electrical insulation and strain-invariant EMI shielding behavior.
基金This work was supported by the National Natural Science Foundation of China (Nos. 51422204, 51372132, and 51672153) and the National Basic Research Program of China (Nos. 2016YFA0200103 and 2013CB228506).
文摘Stretchable and flexible supercapacitors are highly desired due to their many potential applications in wearable devices. However, it is challenging to fabricate supercapacitors that can withstand large tensile strain while maintaining high performance. Herein, we report an ultra-stretchable wire-shaped supercapacitor based on carbon nanotube@graphene@MnO2 fibers wound around a superelastic core fiber. The supercapacitor can sustain tensile strain up to 850%, which is the highest value reported for this type of device to date, while maintaining stable electrochemical performance. The energy density of the supercapacitor is 3.37 mWh·cm^-3 at a power density of 54.0 mW·cm^-3. The results show that 82% of the specific capacitance is retained after 1,000 stretch-release cycles with strains of 700%, demonstrating the superior durability of the elastic supercapacitor and showcasing its potential application in ultra-stretchable flexible electronics.
基金supported by the National Natural Science Foundation of China(62161160311,22209124 and 51976141)the Natural Science Foundation of Hubei Province(2021CFB208)the Science and Technology Development Fund,Macao SAR(FDCT)(0059/2021/AFJ and 0040/2021/A1)。
基金The authors acknowledgethe funding support fromthe National Key R&D Program of China(2019YFF0301802,2019YFB2004802,and 2018YFF0300605)National Natural Science Foundation of China(62101513,51975542)+2 种基金the Innovative Research Group Project of National Natural Science Foundation of China(51821003)Shanxi“1331 Project”Key Subject Construction(1331KSC)Applied Fundamental Research Program of Shanxi Province(201801D121152).
文摘Stretchable,skin-conformal,and self-powered wearable pressure sensors have garnered significant attention for use in human joint bending motion monitoring.Here,a piezo-triboelectric pressure sensor(P-TPS)based on triboelectric nanogenerator and piezoelectric nanogenerator is demonstrated.The P-TPS can generate an enhanced electrical output by coupling the dual-mode triboelectrification and piezoelectric effect.The P-TPS shows high sensitivity(voltage=0.3 V/kPa;current=4.3 nA/kPa;pres-sure range=0-200 kPa),high linearity,and good stability.Furthermore,it demonstrates a wide mea-surement range(0-800 kPa),table frequency response,and fast response time.Additionally,all components of the P-TPS are fabricated using flexible and stretchable materials,affording satisfactory stretchability and excellent skin conformality.Owing to their ability to self-power,they can be attached to the outside of joints to monitor human joint bending movements in real time.Hence,this study provides a novel method of using a stretchable and skin-conformal piezo-triboelectric nanogenerator with high electrical performance as a self-powered pressure sensor,which offers significant potential in personalized recognition,medical research,and human machine interface.