Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstruct...Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstructural evolution of bubbles during ultra-high temperature oxidation remain inadequately understood.To address this gap,the bubble behaviors of multicomponent carbides,including(Hf,Ti)C,(Hf,Zr,Ti)C,(Hf,Zr,Ti,Ta)C,and(Hf,Zr,Ti,Nb)C,were investigated under oxidation conditions at 2500℃.The roles of various elements were elucidated through first-principles calculations.Results show that the for-mation of a dense composite oxide layer is essential for bubble generation,with the release of gaseous products serving as the primary driving force.The microstructure of the bubbles is influenced by the ma-trix composition.The addition of Ti,Ta,and Nb significantly lowers the surface energy of the shell oxides,providing preferential nucleation sites for bubbles.The progressive oxidation of Ti leads to the formation of a“TiO_(2)-TiO-HfO_(2)”multilayerstructureat thebubbletop,which evolvesintoadendriticstructurewith prolonged oxidation.Ta and Nb further modulate the size and number of bubbles by altering the compo-sition and surface energy of the shell oxides.展开更多
To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfu...To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfully produced using the directed energy deposition(DED)technique,which avoided the formation of fatal defects and showcased well-performed mechanical properties across a broad temperature spectrum.Strategic design of the oxidation sequence enabled the early formation of oxide nanolayers,which can form a polycrystalline oxide nanocoating under a complex stress condition to drastically reduce the wear rate from 2.69×10^(-4) mm^(3)·(N·m)^(−1) at room temperature to 6.90×10^(-7) mm^(3)·(N·m)^(−1) at 600℃.These results indicate that the application of additive manufacturing to fabricate RHEAs with superior wear resistance at high temperatures paves the way for the development of functional coatings designed to withstand extreme conditions.展开更多
Walnuts are rich in a variety of nutritional components.However,due to their high content of unsaturated fatty acids(UFAs),the quality of walnuts tends to decline during storage,which adversely affects the development...Walnuts are rich in a variety of nutritional components.However,due to their high content of unsaturated fatty acids(UFAs),the quality of walnuts tends to decline during storage,which adversely affects the development of the walnut industry.This study was aimed to investigate the impacts of temperature and packaging methods on the storage quality and oxidative stability of walnuts.The Wen 185 walnut variety was selected,and the physical-chemical and nutritional indexes of walnuts stored for 42 weeks under different temperatures(18℃,4℃,and room temperature)and packaging methods(vacuum light-exposed,vacuum light-proof,vacuum-ra-diation light-exposed,vacuum-radiation light-proof,nitrogen-filled light-exposed,nitrogen-filled light-proof)were measured.The results showed that low temperatures,especially18℃,in combination with vacuum lightproof packaging,could effectively suppress the increase in oxidative stability indicators such as acid value(AV)and peroxide value(PV),and maintain high retention rates of nutritional indicators like tocopherol and phytosterol.This study has elucidated that low temperatures and appropriate packaging methods play the crucial roles in maintaining the quality and oxidative stability of walnuts during storage.It has provided comprehensive and valuable data support and theoretical basis for the scientific storage of walnuts,contributing to the devel-opment of the walnut industry and the guarantee of product quality.展开更多
Integrating thick/thin film sensors into component systems has emerged as a prevalent approach for monitoring in extreme environments.However,traditional vapor deposition methods face obstacles,including complex fabri...Integrating thick/thin film sensors into component systems has emerged as a prevalent approach for monitoring in extreme environments.However,traditional vapor deposition methods face obstacles,including complex fabrication processes and the degradation of sensitive materials at extremely high temperatures.This work delineates the development of a polysilazane composite dual-layer thick-film Negative Temperature Coefficient(NTC)thermistor characterized by its suitability for extreme temperatures and robust bond strength achieved through an advanced near-net-shape printing methodology.High-temperature resistant La(Ca)CrO_(3)/polysilazane films were printed as the sensitive layer,while a dense layer formed by Cr_(2)O_(3)/polysilazane was used as the protective layer.The bilayer structure resulted in a 2.5-fold increase in adhesion strength compared to the single-layer La(Ca)CrO_(3)/polysilazane films.Experimental results indicate that the dual-layer thick-film NTC thermistor can be operated long-term at 1300℃ with a resistance drift rate of 0.9%/h and survive short-term exposure to temperatures up to 1550℃.As a proof of concept,this work applied 3D printing technology to fabricate a polysilazane composite dual-layer thick-film NTC thermistor on the surface of turbine blades and demonstrated its functionality under flame impingement at nearly 1300℃.Such flexible 3D printing techniques pave the way for a new paradigm in manufacturing sensors capable of withstanding ultra-high temperatures.展开更多
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm...A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.展开更多
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
Laser powder bed fusion(L-PBF)has been used to fabricate biodegradable Mg implants of WE43 alloy,but the degradation is too fast compared with the term bone reconstruction.Previous studies show that high temperature o...Laser powder bed fusion(L-PBF)has been used to fabricate biodegradable Mg implants of WE43 alloy,but the degradation is too fast compared with the term bone reconstruction.Previous studies show that high temperature oxidation(HTO)can successfully inhibit the degradation of WE43 alloy.In this work,the influence of HTO on L-PBF samples of WE43 alloy was investigated regarding tensile,compressive,and abrasive resistance,as well as in vitro cytotoxicity,cell proliferation,hemolysis,and osteogenesis.Compared with the as-built L-PBF samples,HTO increased grain size and grain texture,stabilized and coarsened precipitates,and caused discontinuous static recrystallization in the matrix.The oxide layer at the surface of the HTO samples improved surface roughness,hydrophilia,hardness,and abrasive resis-tance.The tensile strength decreased slightly from 292 to 265 MPa,while the elongation substantially increased from 10.97%to 16.58%after HTO.The in vitro cell viability,cell proliferation,hemolysis,and osteogenic effect were considerably enhanced due to the improvement of surface quality and the initial inhibition of excessive Mg^(2+)releasement.Overall,HTO is of great benefit to the surface performance,ductility,and biocompatibility of WE43 alloy fabricated by L-PBF for biodegradable applications.展开更多
Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The...Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.展开更多
The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and ...The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.展开更多
CO oxidation is probably the most studied reaction in heterogeneous catalysis.This reaction has become a hot topic with the discovery of nanogold catalysts,which are active at low temperatures(at or below room temper...CO oxidation is probably the most studied reaction in heterogeneous catalysis.This reaction has become a hot topic with the discovery of nanogold catalysts,which are active at low temperatures(at or below room temperature).Au catalysts are the benchmark for judging the activities of other metals in CO oxidation.Pt-group metals(PGMs) that give comparable performances are of particular interest.In this mini-review,we summarize the advances in various PGM(Pt,Pd,Ir,Rh,Ru)catalysts that have high catalytic activities in low-temperature CO oxidation arising from reducible supports or the presence of OH species.The effects of the size of the metal species and the importance of the interface between the metal and the reducible support are covered and discussed in terms of their promotional role in CO oxidation at low temperatures.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and ...A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.展开更多
The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous ...The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.展开更多
A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patt...A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.展开更多
The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review present...The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review presents an overview of the research progress on oxidation behavior of Co-based superalloys, including oxidation kinetics, oxides morphology, the formation and spallation of oxide layers, and importantly, the synergistic effects of alloying elements on oxidation resistance—a critical area considering the complex interactions with multiple alloying elements. Additionally, this review compares the oxidation resistance of single crystal versus polycrystalline alloys. The effect of phase interface and dislocations on oxidation behavior is also discussed. While significant progress has been achieved, areas necessitating further investigation include optimizing alloy compositions for enhanced oxidation resistance and understanding the long-term stability of oxide layers. The future prospects for Co-based superalloys are promising as ongoing research aims to address the existing challenges and unlock new applications at even higher operating temperatures.展开更多
Ultra-high temperature ceramics(UHTCs) offer great potential for applications in extreme service environments,such as hypersonic vehicles,rockets and re-entry spacecraft.However,the severe ablation caused by highspeed...Ultra-high temperature ceramics(UHTCs) offer great potential for applications in extreme service environments,such as hypersonic vehicles,rockets and re-entry spacecraft.However,the severe ablation caused by highspeed heat flow scouring and high-temperature oxidation limits the engineering application of UHTCs.In this work,we report a novel high-entropy UHTC(Ti_(0.2)Zr_(0.2)V_(0.2)Nb_(0.2)Cr_(0.2))(C_(0.5)N_(0.5)),which exhibits superior ablation resistance and light weight compared with traditional UHTCs.Specifically,at a temperature of 2650 K,the mass ablation rate of the material was measured as1.025×10^(-2)g·s^(-1),and the density was calculated to be 6.7 g·cm^(-3).The impressive ablation resistance of(Ti_(0.2)Zr_(0.2)V_(0.2)Nb_(0.2)Cr_(0.2))(C_(0.5)N_(0.5)) is attributed to the incorporation of a self-healing mechanism,which is associated with the in-situ formation of a medium-entropy oxide(TiVCr)O_(2) during the ablation process.The mediumentropy oxide can seal pores and cracks to retard oxygen diffusion and prevent the material from fragmentation,thereby resulting in outstanding ablation resistance.展开更多
Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-li...Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.展开更多
Developing efficient supported Pd catalysts and understanding their catalytic mechanism in CO oxidation are challenging research topics in recent years.This paper describes the synthesis of Pd nanoparticles supported ...Developing efficient supported Pd catalysts and understanding their catalytic mechanism in CO oxidation are challenging research topics in recent years.This paper describes the synthesis of Pd nanoparticles supported on CeO2 nanotubes via an alcohol reduction method.The effect of the support morphology on the catalytic reaction was explored.Subsequently,the performance of the prepared catalysts was investigated toward CO oxidation reaction and characterized by Nitrogen sorption,X-ray diffraction,X-ray photoelectron spectroscopy,transmission electron microscopy,and CO-temperature-programmed desorption techniques.The results indicated that the catalyst of Pd on CeO2 nanotubes exhibits excellent activity in CO oxidation at low temperatures,due to its large surface area,the high dispersion of Pd species,the mesoporous and tubular structure of the CeO2-nanotube support,the abundant Ce3+,formation of Pd–O–Ce bonding,and enhanced metal–support interaction on the catalyst surface.展开更多
Common anode materials in aqueous alkaline electrolytes,such as cadmium,metal hydrides and zinc,usually suffer from remarkable biotoxicity,high cost,and serious side reactions.To overcome these problems,we develop a c...Common anode materials in aqueous alkaline electrolytes,such as cadmium,metal hydrides and zinc,usually suffer from remarkable biotoxicity,high cost,and serious side reactions.To overcome these problems,we develop a conjugated porous polymer(CPP)in-situ grown on reduced graphene oxide(rGO)and Ketjen black(KB),noted as C_(4)N/rGO and C_(4)N/KB respectively,as the alternative anodes.The results show that C_(4)N/rGO electrode delivers a low redox potential(−0.905 V vs.Ag/AgCl),high specific capacity(268.8 mAh g^(-1) at 0.2 A g^(-1)),ultra-stable and fast sodium ion storage behavior(216 mAh g^(-1) at 20 A g^(-1))in 2 M NaOH electrolyte.The assembled C_(4)N/rGO//Ni(OH)_(2) full battery can cycle stably more than 38,000 cycles.Furthermore,by adding a small amount of antifreeze additive dimethyl sulfoxide(DMSO)to adjust the hydrogen bonding network,the low-temperature performance of the electrolyte(0.1 DMSO/2 M NaOH)is significantly improved while hydrogen evolution is inhibited.Consequently,the C_(4)N/rGO//Ni(OH)_(2) full cell exhibits an energy density of 147.3 Wh Kg^(-1) and ultra-high cycling stability over a wide temperature range from−70 to 45℃.This work provides an ultra-stable high-capacity CPPbased anode and antifreeze electrolyte for aqueous alkaline batteries and will facilitate their practical applications under extreme conditions.展开更多
Press hardening with manganese-boron steels is a prominent manufacturing technique that allows for reduced weight and expense in automotive construction,while providing enhanced crash performance.Nevertheless,the deve...Press hardening with manganese-boron steels is a prominent manufacturing technique that allows for reduced weight and expense in automotive construction,while providing enhanced crash performance.Nevertheless,the development of a loosely attached oxide layer during press hardening and following additional processing of the layer presents a significant risk to the dimensional precision of the completed product.Here,we develop a new preprocessing approach to address the scale spallation issue by introducing trace amounts of silicate and tungstate into the rinsing solution following pickling.We demonstrate that the pre-deposited membrane promotes the formation of a noticeably thinner,more continuous and stickier oxide scale at high temperatures,enabling the direct application of automobile painting onto the scale.Our research provides an economical remedy to the troublesome scale flaking issue without requiring any modifications to the existing production line,and conveys a thorough comprehension of the mechanism by which the preprocessed membrane resists high-temperature oxidation.展开更多
基金financially supported by National Natural Science Foundation of China(No.52072410).
文摘Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstructural evolution of bubbles during ultra-high temperature oxidation remain inadequately understood.To address this gap,the bubble behaviors of multicomponent carbides,including(Hf,Ti)C,(Hf,Zr,Ti)C,(Hf,Zr,Ti,Ta)C,and(Hf,Zr,Ti,Nb)C,were investigated under oxidation conditions at 2500℃.The roles of various elements were elucidated through first-principles calculations.Results show that the for-mation of a dense composite oxide layer is essential for bubble generation,with the release of gaseous products serving as the primary driving force.The microstructure of the bubbles is influenced by the ma-trix composition.The addition of Ti,Ta,and Nb significantly lowers the surface energy of the shell oxides,providing preferential nucleation sites for bubbles.The progressive oxidation of Ti leads to the formation of a“TiO_(2)-TiO-HfO_(2)”multilayerstructureat thebubbletop,which evolvesintoadendriticstructurewith prolonged oxidation.Ta and Nb further modulate the size and number of bubbles by altering the compo-sition and surface energy of the shell oxides.
基金supported by Guangdong Major Project of Basic and Applied Basic Research,China(No.2019B030302010)the Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region,China and National Natural Science Foundation of China(Nos.N_PolyU523/20 and 52061160483)+4 种基金the National Natural Science Foundation of China(Nos.52104362,52071222,52471179,52471180 and 52001221)the National Key R&D Program of China(No.2022YFA1603800)the National Key Research and Development Program of China(No.2021YFA0716302)Guangdong Provincial Quantum Science Strategic Initiative(No.GDZX2301001)Guangdong Basic and Applied Basic Research,China(No.2020B1515130007).
文摘To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfully produced using the directed energy deposition(DED)technique,which avoided the formation of fatal defects and showcased well-performed mechanical properties across a broad temperature spectrum.Strategic design of the oxidation sequence enabled the early formation of oxide nanolayers,which can form a polycrystalline oxide nanocoating under a complex stress condition to drastically reduce the wear rate from 2.69×10^(-4) mm^(3)·(N·m)^(−1) at room temperature to 6.90×10^(-7) mm^(3)·(N·m)^(−1) at 600℃.These results indicate that the application of additive manufacturing to fabricate RHEAs with superior wear resistance at high temperatures paves the way for the development of functional coatings designed to withstand extreme conditions.
基金Key Technology Research and Development Program in Autonomous Region(2022A02009)Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘Walnuts are rich in a variety of nutritional components.However,due to their high content of unsaturated fatty acids(UFAs),the quality of walnuts tends to decline during storage,which adversely affects the development of the walnut industry.This study was aimed to investigate the impacts of temperature and packaging methods on the storage quality and oxidative stability of walnuts.The Wen 185 walnut variety was selected,and the physical-chemical and nutritional indexes of walnuts stored for 42 weeks under different temperatures(18℃,4℃,and room temperature)and packaging methods(vacuum light-exposed,vacuum light-proof,vacuum-ra-diation light-exposed,vacuum-radiation light-proof,nitrogen-filled light-exposed,nitrogen-filled light-proof)were measured.The results showed that low temperatures,especially18℃,in combination with vacuum lightproof packaging,could effectively suppress the increase in oxidative stability indicators such as acid value(AV)and peroxide value(PV),and maintain high retention rates of nutritional indicators like tocopherol and phytosterol.This study has elucidated that low temperatures and appropriate packaging methods play the crucial roles in maintaining the quality and oxidative stability of walnuts during storage.It has provided comprehensive and valuable data support and theoretical basis for the scientific storage of walnuts,contributing to the devel-opment of the walnut industry and the guarantee of product quality.
基金supported by the National Key R&D Program of China(No.2022YFB3203900).
文摘Integrating thick/thin film sensors into component systems has emerged as a prevalent approach for monitoring in extreme environments.However,traditional vapor deposition methods face obstacles,including complex fabrication processes and the degradation of sensitive materials at extremely high temperatures.This work delineates the development of a polysilazane composite dual-layer thick-film Negative Temperature Coefficient(NTC)thermistor characterized by its suitability for extreme temperatures and robust bond strength achieved through an advanced near-net-shape printing methodology.High-temperature resistant La(Ca)CrO_(3)/polysilazane films were printed as the sensitive layer,while a dense layer formed by Cr_(2)O_(3)/polysilazane was used as the protective layer.The bilayer structure resulted in a 2.5-fold increase in adhesion strength compared to the single-layer La(Ca)CrO_(3)/polysilazane films.Experimental results indicate that the dual-layer thick-film NTC thermistor can be operated long-term at 1300℃ with a resistance drift rate of 0.9%/h and survive short-term exposure to temperatures up to 1550℃.As a proof of concept,this work applied 3D printing technology to fabricate a polysilazane composite dual-layer thick-film NTC thermistor on the surface of turbine blades and demonstrated its functionality under flame impingement at nearly 1300℃.Such flexible 3D printing techniques pave the way for a new paradigm in manufacturing sensors capable of withstanding ultra-high temperatures.
基金financially supported by the National Key R&D Program of China (No.2021YFB3700400)the National Natural Science Foundation of China (Nos.52074030,51904021,and 52174294)。
文摘A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.
基金National Key Research and Development Program of China(No.2018YFE0104200)National Natural Science Foundation of China(Nos.52175274,82172065,51875310)Tsinghua Precision Medicine Foundation and Tsinghua-Toyota Joint Research Fund.
文摘Laser powder bed fusion(L-PBF)has been used to fabricate biodegradable Mg implants of WE43 alloy,but the degradation is too fast compared with the term bone reconstruction.Previous studies show that high temperature oxidation(HTO)can successfully inhibit the degradation of WE43 alloy.In this work,the influence of HTO on L-PBF samples of WE43 alloy was investigated regarding tensile,compressive,and abrasive resistance,as well as in vitro cytotoxicity,cell proliferation,hemolysis,and osteogenesis.Compared with the as-built L-PBF samples,HTO increased grain size and grain texture,stabilized and coarsened precipitates,and caused discontinuous static recrystallization in the matrix.The oxide layer at the surface of the HTO samples improved surface roughness,hydrophilia,hardness,and abrasive resis-tance.The tensile strength decreased slightly from 292 to 265 MPa,while the elongation substantially increased from 10.97%to 16.58%after HTO.The in vitro cell viability,cell proliferation,hemolysis,and osteogenic effect were considerably enhanced due to the improvement of surface quality and the initial inhibition of excessive Mg^(2+)releasement.Overall,HTO is of great benefit to the surface performance,ductility,and biocompatibility of WE43 alloy fabricated by L-PBF for biodegradable applications.
文摘Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.
基金Project (51075342) supported by the National Natural Science Foundation of ChinaProject (2007CB714704) supported by the National Basic Research Program of China
文摘The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.
基金supported by the National Natural Science Foundation of China(21076211,21203181,21576251,21676269)the "Strategic Priority Research Program" of the Chinese Academy of Sciences(XDB17020100)+1 种基金the National Key projects for Fundamental Research and Development of China(2016YFA0202801)Department of Science and Technology of Liaoning Province under contract of 2015020086-101~~
文摘CO oxidation is probably the most studied reaction in heterogeneous catalysis.This reaction has become a hot topic with the discovery of nanogold catalysts,which are active at low temperatures(at or below room temperature).Au catalysts are the benchmark for judging the activities of other metals in CO oxidation.Pt-group metals(PGMs) that give comparable performances are of particular interest.In this mini-review,we summarize the advances in various PGM(Pt,Pd,Ir,Rh,Ru)catalysts that have high catalytic activities in low-temperature CO oxidation arising from reducible supports or the presence of OH species.The effects of the size of the metal species and the importance of the interface between the metal and the reducible support are covered and discussed in terms of their promotional role in CO oxidation at low temperatures.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
基金Project(50971127)supported by the National Natural Science Foundation of China
文摘A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.
基金Project(51101055)supported by the National Natural Science Foundation of China
文摘The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.
基金supported by the National Science Foundation for Young Scientists of China (51202171)~~
文摘A molten salt method was developed to prepare porous La1‐xSrxMn0.8Fe0.2O3 (0≤ x ≤ 0.6) micro‐spheres using hierarchical porous δ‐MnO2 microspheres as a template in eutectic NaNO3‐KNO3. X‐ray diffraction patterns showed that single phase LaMn0.8Fe0.2O3 with good crystallinity was syn‐thesized at 450℃ after 4 h. Transmission electron microscope images exhibited that the LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h possessed a porous spherical morphology com‐posed of aggregated nanocrystallites. Field emission scanning electron microscope images indicated that the growth of the porous LaMn0.8Fe0.2O3 microspheres has two stages. SEM pictures showed that a higher calcination temperature than 450?? had an adverse effect on the formation of a po‐rous spherical structure. The LaMn0.8Fe0.2O3 sample obtained at 450?? after 4 h displayed a high BET surface area of 55.73 m2/g with a pore size of 9.38 nm. Fourier transform infrared spectra suggested that Sr2+ions entered the A sites and induced a decrease of the binding energy between Mn and O. The CO conversion with the La1‐xSrxMn0.8Fe0.2O3 (0≤x≤0.6) samples indicated that the La0.4Sr0.6Mn0.8Fe0.2O3 sample had the best catalytic activity and stability. Further analysis by X‐ray photoelectron spectroscopy demonstrated that Sr2+doping altered the content of Mn4+ions, oxygen vacancies and adsorbed oxygen species on the surface, which affected the catalytic performance for CO oxidation.
基金support from the National Natural Science Foundation of China(Nos.52171107,52201203)the Hebei Provincial Natural Science Foundation,China(No.E2021501026)the National Natural Science Foundation of China-Joint Fund of Iron and Steel Research(No.U1960204).
文摘The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review presents an overview of the research progress on oxidation behavior of Co-based superalloys, including oxidation kinetics, oxides morphology, the formation and spallation of oxide layers, and importantly, the synergistic effects of alloying elements on oxidation resistance—a critical area considering the complex interactions with multiple alloying elements. Additionally, this review compares the oxidation resistance of single crystal versus polycrystalline alloys. The effect of phase interface and dislocations on oxidation behavior is also discussed. While significant progress has been achieved, areas necessitating further investigation include optimizing alloy compositions for enhanced oxidation resistance and understanding the long-term stability of oxide layers. The future prospects for Co-based superalloys are promising as ongoing research aims to address the existing challenges and unlock new applications at even higher operating temperatures.
基金financially supported by the National Natural Science Foundation of China (Nos.52271003,52071024,52271003 and 52101188)the Funds for Creative Research Groups of China (No.51921001)+5 种基金the Projects of International Cooperation and Exchanges of NSFC (Nos.51961160729 and 52061135207)111 Project (No.BP0719004)the Program for Changjiang Scholars and Innovative Research Team in University of China (No.IRT_14R05)the Fundamental Research Fund for the Central Universities of Chinathe Project of Science and Technology on Plasma Dynamics Laboratory,Air Force Engineering University,Xi'an,China (No.126142202210206)the State Key Lab for Advanced Metals and Materials (No.2022-Z10)。
文摘Ultra-high temperature ceramics(UHTCs) offer great potential for applications in extreme service environments,such as hypersonic vehicles,rockets and re-entry spacecraft.However,the severe ablation caused by highspeed heat flow scouring and high-temperature oxidation limits the engineering application of UHTCs.In this work,we report a novel high-entropy UHTC(Ti_(0.2)Zr_(0.2)V_(0.2)Nb_(0.2)Cr_(0.2))(C_(0.5)N_(0.5)),which exhibits superior ablation resistance and light weight compared with traditional UHTCs.Specifically,at a temperature of 2650 K,the mass ablation rate of the material was measured as1.025×10^(-2)g·s^(-1),and the density was calculated to be 6.7 g·cm^(-3).The impressive ablation resistance of(Ti_(0.2)Zr_(0.2)V_(0.2)Nb_(0.2)Cr_(0.2))(C_(0.5)N_(0.5)) is attributed to the incorporation of a self-healing mechanism,which is associated with the in-situ formation of a medium-entropy oxide(TiVCr)O_(2) during the ablation process.The mediumentropy oxide can seal pores and cracks to retard oxygen diffusion and prevent the material from fragmentation,thereby resulting in outstanding ablation resistance.
基金supported by the National Natural Science Foundation of China (51320105001, 51372190, 21573170, 51272199, 21433007)the National Basic Research Program of China (973 program, 2013CB632402)+2 种基金the Natural Science Foundation of Hubei Province (2015CFA001)the Fundamental Research Funds for the Central Universities (WUT: 2015-Ⅲ-034)Innovative Research Funds of SKLWUT (2015-ZD-1)~~
文摘Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature.
基金supported by the National Natural Science Foundation of China(21376209,21376169)Zhejiang Provincial Natural Science Foundation(LZ13B060004)+1 种基金Program for Zhejiang Leading Team of S&T Innovation(2013TD07)Program of Introducing Talents of Discipline to Universities(B06006)~~
文摘Developing efficient supported Pd catalysts and understanding their catalytic mechanism in CO oxidation are challenging research topics in recent years.This paper describes the synthesis of Pd nanoparticles supported on CeO2 nanotubes via an alcohol reduction method.The effect of the support morphology on the catalytic reaction was explored.Subsequently,the performance of the prepared catalysts was investigated toward CO oxidation reaction and characterized by Nitrogen sorption,X-ray diffraction,X-ray photoelectron spectroscopy,transmission electron microscopy,and CO-temperature-programmed desorption techniques.The results indicated that the catalyst of Pd on CeO2 nanotubes exhibits excellent activity in CO oxidation at low temperatures,due to its large surface area,the high dispersion of Pd species,the mesoporous and tubular structure of the CeO2-nanotube support,the abundant Ce3+,formation of Pd–O–Ce bonding,and enhanced metal–support interaction on the catalyst surface.
基金financial support by the National Natural Science Foundation of China(22371010,21771017 and 51702009)the“Hundred Talents Program”of the Chinese Academy of Science,Fundamental Research Funds for the Central Universities,Shenzhen Science and Technology Program(JCYJ20210324115412035 JCYJ2021-0324123202008,JCYJ20210324122803009 and ZDSYS20210813095534001)Guangdong Basic and Applied Basic Research Foundation(2021A1515110880).
文摘Common anode materials in aqueous alkaline electrolytes,such as cadmium,metal hydrides and zinc,usually suffer from remarkable biotoxicity,high cost,and serious side reactions.To overcome these problems,we develop a conjugated porous polymer(CPP)in-situ grown on reduced graphene oxide(rGO)and Ketjen black(KB),noted as C_(4)N/rGO and C_(4)N/KB respectively,as the alternative anodes.The results show that C_(4)N/rGO electrode delivers a low redox potential(−0.905 V vs.Ag/AgCl),high specific capacity(268.8 mAh g^(-1) at 0.2 A g^(-1)),ultra-stable and fast sodium ion storage behavior(216 mAh g^(-1) at 20 A g^(-1))in 2 M NaOH electrolyte.The assembled C_(4)N/rGO//Ni(OH)_(2) full battery can cycle stably more than 38,000 cycles.Furthermore,by adding a small amount of antifreeze additive dimethyl sulfoxide(DMSO)to adjust the hydrogen bonding network,the low-temperature performance of the electrolyte(0.1 DMSO/2 M NaOH)is significantly improved while hydrogen evolution is inhibited.Consequently,the C_(4)N/rGO//Ni(OH)_(2) full cell exhibits an energy density of 147.3 Wh Kg^(-1) and ultra-high cycling stability over a wide temperature range from−70 to 45℃.This work provides an ultra-stable high-capacity CPPbased anode and antifreeze electrolyte for aqueous alkaline batteries and will facilitate their practical applications under extreme conditions.
基金supported by the Liaoning Youth Science Foundation Project B Category(Contract No.2025010041-JH6/1010)the National Natural Science Foundation of China(Grant No.52471103).
文摘Press hardening with manganese-boron steels is a prominent manufacturing technique that allows for reduced weight and expense in automotive construction,while providing enhanced crash performance.Nevertheless,the development of a loosely attached oxide layer during press hardening and following additional processing of the layer presents a significant risk to the dimensional precision of the completed product.Here,we develop a new preprocessing approach to address the scale spallation issue by introducing trace amounts of silicate and tungstate into the rinsing solution following pickling.We demonstrate that the pre-deposited membrane promotes the formation of a noticeably thinner,more continuous and stickier oxide scale at high temperatures,enabling the direct application of automobile painting onto the scale.Our research provides an economical remedy to the troublesome scale flaking issue without requiring any modifications to the existing production line,and conveys a thorough comprehension of the mechanism by which the preprocessed membrane resists high-temperature oxidation.