Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K ...Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.展开更多
The production cross-sections, intensity ratios, and radiative Auger intensity ratios of Co, Ni, Cu, and Zn elements in different complexes were measured. The chemical effects on the K shell fluorescence parameters an...The production cross-sections, intensity ratios, and radiative Auger intensity ratios of Co, Ni, Cu, and Zn elements in different complexes were measured. The chemical effects on the K shell fluorescence parameters and the radiative Auger intensity ratios of these elements were investigated and the changes in these parameters were interpreted according to the charge transfer process. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV.展开更多
文摘Chemical effects on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and △E energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.
文摘The production cross-sections, intensity ratios, and radiative Auger intensity ratios of Co, Ni, Cu, and Zn elements in different complexes were measured. The chemical effects on the K shell fluorescence parameters and the radiative Auger intensity ratios of these elements were investigated and the changes in these parameters were interpreted according to the charge transfer process. The samples were excited by 59.5 keV γ-rays from a ^241Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV.