期刊文献+
共找到135,459篇文章
< 1 2 250 >
每页显示 20 50 100
Project New Orion: Pulsed Nuclear Space Propulsion Using Photofission Activated by Ultra-Intense Laser 被引量:2
1
作者 Robert LeMoyne Timothy Mastroianni 《Journal of Applied Mathematics and Physics》 2016年第4期630-636,共7页
Project New Orion entails a pulsed nuclear space propulsion system that utilizes photofission through the implementation of an ultra-intense laser. The historical origins derive from the endeavors of Project Orion, wh... Project New Orion entails a pulsed nuclear space propulsion system that utilizes photofission through the implementation of an ultra-intense laser. The historical origins derive from the endeavors of Project Orion, which utilized thermonuclear devices to impart a considerable velocity increment on the respective spacecraft. The shear magnitude of Project Orion significantly detracts from the likelihood of progressive research development testing and evaluation. Project New Orion incorporates a more feasible pathway for the progressive research development testing and evaluation of the pulsed nuclear space propulsion system. Photofission through the application of an ultra-intense laser enables a much more controllable and scalable nuclear yield. The energy source for the ultra-intense laser is derived from a first stage liquid hydrogen and liquid oxygen chemical propulsion system. A portion of the thermal/kinetic energy of the rocket propulsive fluid is converted to electrical energy through a magneto-hydrodynamic generator with cryogenic propellant densification for facilitating the integral superconducting magnets. Fundamental analysis of Project New Orion demonstrates the capacity to impart a meaningful velocity increment through ultra-intense laser derived photofission on a small spacecraft. 展开更多
关键词 Project Orion Pulsed Nuclear Space Propulsion PHOTOFISSION Nuclear Fission ultra-intense laser Magneto-Hydrodynamic Generator Cryogenic Propellant Densification
在线阅读 下载PDF
Numerical studies on pair production in ultra-intense laser interaction with a thin solid-foil
2
作者 Yunxian TIAN Xiaolin JIN +3 位作者 Xiaoliang GU Weizhong YAN Jianqing LI Bin LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第8期11-15,共5页
A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon e... A theoretical and numerical model of photon and electron–positron pair production in strong-field quantum electrodynamics(QED) is described. Two processes are contained in our QED theoretical model, one is photon emission in the interaction of ultra-intense laser with relativistic electron(or positron), and the other is pair production by a gamma-ray photon interacting with the laser field.This model has been included in a PIC/MCC simulation code named BUMBLEBEE 1 D, which is used to simulate the laser plasma interaction. Using this code, the evolutions of electron–positron pair and gamma-ray photon production in ultra-intense laser interaction with aluminum foil target are simulated and analyzed. The simulation results revealed that more positrons are moved in the opposite direction to the incident direction of the laser under the charge separation field. 展开更多
关键词 QED ultra-intense laser gamma ray photon electron-positron pair
在线阅读 下载PDF
Fundamental Architecture and Analysis of an Antimatter Ultra-Intense Laser Derived Pulsed Space Propulsion System 被引量:3
3
作者 Robert Le Moyne Timothy Mastroianni 《Journal of Applied Mathematics and Physics》 2014年第5期10-18,共9页
Antimatter has been generated in large quantities by the Lawrence Livermore National Laboratory Titan laser. The Titan laser is an ultra-intense laser system on the order of approximately 1020W/cm2 with pulse duration... Antimatter has been generated in large quantities by the Lawrence Livermore National Laboratory Titan laser. The Titan laser is an ultra-intense laser system on the order of approximately 1020W/cm2 with pulse durations of roughly 1ps. With the Titan laser incident on a high atomic number target, such as gold, antimatter on the scale of 2 × 1010 positrons are generated. Roughly 90% of the generated positrons are ejected anisotropic and aft to the respective target. The mechanisms for the laser-derived positron antimatter generation involve electron interaction with the nuclei based on bremsstrahlung photons that yield electron-positron pairs as a consequence of the Bethe-Heitler process, which predominates the Trident process. Given the constraints of the current and near future technology space, a pulsed space propulsion configuration is advocated for antimatter derived space propulsion, similar in concept to pulsed radioisotope propulsion. Antimatter is generated through an ultra-intense laser on the scale of a Titan laser incident on a gold target and annihilated in a closed chamber, representative of a combustion chamber. Upon reaching a temperature threshold, the closed chamber opens, producing a pulse of thrust. The implication of the pulsed space propulsion antimatter architecture is that the energy source for the antimatter propulsion system can be decoupled from the actual spacecraft. In contrast to conventional chemical propulsion systems, which require storage of its respective propulsive chemical potential energy, the proposed antimatter propulsion architecture may have the energy source at a disparate location from the spacecraft. The ultra-intense laser could convey its laser energy over a distance to the actual spacecraft equipped with the positron antimatter pulsed space propulsion system. Hydrogen is considered as the propulsive fluid, in light of its low molecular weight. Fundamental analysis is applied to preliminarily define the performance of the positron antimatter derived pulsed space propulsion system. The fundamental performance analysis of the antimatter pulsed space propulsion system successfully reveals the architecture is viable for further evaluation. 展开更多
关键词 ultra-intense laser ANTIMATTER POSITRON ANTIMATTER PROPULSION ANTIMATTER Generation Space PROPULSION
暂未订购
Advanced Concept Ramjet Propulsion System Utilizing In-Situ Positron Antimatter Derived from Ultra-Intense Laser with Fundamental Performance Analysis 被引量:3
4
作者 Robert Le Moyne Timothy Mastroianni 《Journal of Applied Mathematics and Physics》 2014年第5期19-26,共8页
The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific found... The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific foundation for the generation of antimatter by an ultra-intense laser was established in the early 1970’s and later demonstrated at Lawrence Livermore National Laboratory from 2008 to 2009. Antimatter on the scale of 2 × 1010 positrons were generated through a ~1 ps pulse from the Lawrence Livermore National Laboratory Titan laser that has an intensity of ~1020 W/cm2. The predominant mechanism is the Bethe-Heitler process, which involves high-energy bremsstrahlung photons as a result of electron-nuclei interaction. Propulsion involving lasers through chemical rather than non-chemical interaction has been previously advocated by Phipps. The major utilities of the ultra-intense laser derived antimatter ramjet are the capability to generate antimatter without a complex storage system and the ability to decouple the antimatter ramjet propulsion system from the energy source. For instance the ultra-intense laser and energy source could be terrestrial, while the ramjet could be mounted to a UAV as a propulsion system. With the extrapolation of current technologies, a sufficient number of pulses by ultra-intense lasers are eventually anticipated for the generation of antimatter to heat the propulsive flow of a ramjet. Fundamental performance analysis is provided based on an ideal ramjet derivation that is modified to address the proposed antimatter ramjet architecture. 展开更多
关键词 ultra-intense laser ANTIMATTER POSITRON ANTIMATTER PROPULSION ANTIMATTER Generation RAMJET PROPULSION
暂未订购
Fundamental Architecture and Performance Analysis of Photofission Pulsed Space Propulsion System Using Ultra-Intense Laser 被引量:2
5
作者 Robert LeMoyne Timothy Mastroianni 《Journal of Applied Mathematics and Physics》 2015年第4期436-442,共7页
Photofission enables a unique capability for the domain of non-chemical space propulsion. An ultra-intense laser enables the capacity to induce nuclear fission through the development of bre- msstrahlung photons. A fu... Photofission enables a unique capability for the domain of non-chemical space propulsion. An ultra-intense laser enables the capacity to induce nuclear fission through the development of bre- msstrahlung photons. A fundamental architecture and performance analysis of a photofission pulsed space propulsion system through the operation of an ultra-intense laser is presented. A historical perspective of previous conceptual nuclear fission propulsion systems is addressed. These applications use neutron derived nuclear fission;however, there is inherent complexity that has precluded further development. The background of photofission is detailed. The conceptual architecture of photofission pulsed space propulsion and fundamental performance parameters are established. The implications are the energy source and ultra-intense laser can be situated far remote from the propulsion system. Advances in supporting laser technologies are anticipated to increase the potential for photofission pulsed space propulsion. The fundamental performance analysis of the photofission pulsed space propulsion system indicates the architecture is feasible for further evaluation. 展开更多
关键词 ultra-intense laser PHOTOFISSION PHOTOFISSION PROPULSION Nuclear FISSION SPACE PROPULSION PULSED SPACE PROPULSION
暂未订购
Probing and possible application of the QED vacuum with micro-bubble implosions induced by ultra-intense laser pulses 被引量:1
6
作者 James K.Koga Masakatsu Murakami +1 位作者 Alexey V.Arefiev Yoshihide Nakamiya 《Matter and Radiation at Extremes》 SCIE CAS 2019年第3期18-24,共7页
The interaction of micro-bubbles with ultra-intense laser pulses has been shown to generate ultra-high proton densities and correspondingly high electric fields.Weinvestigate the possibility of using such a combinatio... The interaction of micro-bubbles with ultra-intense laser pulses has been shown to generate ultra-high proton densities and correspondingly high electric fields.Weinvestigate the possibility of using such a combination to study the fundamental physical phenomenon of vacuum polarization.With current or near-future laser systems,measurement of vacuum polarization via the bending of gamma rays that pass near imploded microbubbles may be possible.Since it is independent of photon energy to within the leading-order solution of the Heisenberg–Euler Lagrangian and the geometric optics approximation,the corresponding index of refraction can dominate the indices of refraction due to other effects at sufficiently high photon energies.We consider the possibility of its application to a transient gamma-ray lens. 展开更多
关键词 laser POLARIZATION VACUUM
在线阅读 下载PDF
Self-Thomson Backscattering of Ultra-Intense Laser from Thin Foil Target
7
作者 Ashutosh Sharma 《Journal of Electromagnetic Analysis and Applications》 2013年第1期43-48,共6页
An electromagnetic solitary structure in attosecond regime is identified, costreaming with electron bunch. It is observed via nonlinear process of Self-Thomson backscattering of an ultra-intense laser from thin foil t... An electromagnetic solitary structure in attosecond regime is identified, costreaming with electron bunch. It is observed via nonlinear process of Self-Thomson backscattering of an ultra-intense laser from thin foil target. The process is termed as Self-Thomson Backscattering since the counter propagating electron sheets are generated by the drive laser itself. The radiation pressure acceleration model is considered for the interaction of a super-intense linearly polarized laser pulse with a thin foil in one-dimensional (1D) particle-in-cell (PIC) simulations. 展开更多
关键词 ultra-intense laser Plasma Interaction THOMSON BACKSCATTERING SOLITARY Electromagnetic Field
在线阅读 下载PDF
Positron Induced Fusion Pulsed Space Propulsion through an Ultra-Intense Laser
8
作者 Robert LeMoyne 《Journal of Applied Mathematics and Physics》 2017年第4期813-821,共9页
A pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target is conceptually presented through fundamental performance analysis... A pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target is conceptually presented through fundamental performance analysis. As opposed to traditional strategies positron antimatter is considered rather than antiproton antimatter. Positron antimatter can be produced by an ultra- intense laser incident on a high atomic number target, such as gold. The ultra-intense laser production of positron antimatter mechanism greatly alleviates constraints, such as requirements for antimatter storage imperative for antiproton antimatter. Also the ultra-intense laser and associated energy source can be stationary or positioned remote while the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion is in flight. Various mechanisms for antimatter catalyzed fusion are considered, for which the preferred mechanism is the antiproton hotspot ignition strategy. Fundamental performance analysis is subsequently applied to derive positron antimatter generation requirements and associated propulsion performance. The characteristics of the pulsed space propulsion system using position antimatter to induce Deuterium-Tritium fusion through an ultra-intense laser incident on a gold target imply a promising non-chemical propulsion alternative for the transport of bulk cargo to support space missions. 展开更多
关键词 Antimatter INDUCED FUSION PULSED SPACE PROPULSION Nuclear FUSION ultra-intense laser Bethe-Heitler Process POSITRON Antiproton Hotspot Ignition
暂未订购
Controlled Fusion Strategy Using Ultra-Intense Laser Derived Positron Generation for Initiation
9
作者 Robert Le Moyne 《Journal of Applied Mathematics and Physics》 2018年第4期693-703,共11页
A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a c... A controllable strategy for eliciting nuclear fusion is presented through ultra-intenselaser derived positron generation by a conceptual first physics perspective. The capability to generate positrons on demand in a controlled manner through an ultra-intense laser incident on a high atomic number target, such as gold, is the intrinsic core to the foundation of controllable nuclear fusion. Positron antimatter generated from the periphery of the fusion fuel pellet provides the basis for initiating the fusion reaction, which is regulated by controlling the operation of the ultra-intense laser. A dual pulsed Fast Ignition mechanism is selected to achieve the fusion reaction. Based on first physics performance analysis the controllable strategy for eliciting nuclear fusion through ultra-intenselaser derived positron generation offers a realizable means for achieving regulated nuclear fusion. A future perspective of the controllable fusion strategy addresses the opportunities and concerns of a pathway toward regulated nuclear fusion. 展开更多
关键词 Controllable Nuclear Fusion ultra-intense laser POSITRON POSITRON Generation ANTIMATTER TRIDENT PROCESS Bethe-Heitler PROCESS Breit-Wheeler PROCESS Volumetric IGNITION HOTSPOT IGNITION Fast IGNITION
暂未订购
Laser-driven micro-pinch:a pathway to ultra-intense neutrons
10
作者 Pu-Tong Wang Xue-Song Geng +2 位作者 Guo-Qiang Zhang Liang-Liang Ji Yu-Gang Ma 《Nuclear Science and Techniques》 2025年第6期150-155,共6页
Utilizing the laser-driven Z-pinch e ect,we propose an approach for generating an ultrashort,intense Me V neutron source with femtosecond pulse duration.The self-generated magnetic field driven by a petawatt-class las... Utilizing the laser-driven Z-pinch e ect,we propose an approach for generating an ultrashort,intense Me V neutron source with femtosecond pulse duration.The self-generated magnetic field driven by a petawatt-class laser pulse compressed the deuterium in a single nanowire to more than 120 times its initial density,achieving an unprecedented particle number density of 10^(25)cm^(-3).Through full-dimensional kinetic simulations,including nuclear reactions,we found that these Z-pinches can generate high-intensity and short-duration neutron pulses,with the peak flux reaching 10^(27)cm^(-2)s^(-1).Such laser-driven neutron sources are beyond the capabilities of existing approaches and pave the way for groundbreaking applications in r-process nucleosynthesis studies and high-precision time-of-flight neutron data measurements. 展开更多
关键词 Nanowire target Z-PINCH D–D fusion reaction laser plasma Neutron source
在线阅读 下载PDF
Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target 被引量:1
11
作者 J.M.Tian H.B.Cai +3 位作者 W.S.Zhang E.H.Zhang B.Du S.P.Zhu 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2020年第2期50-55,共6页
Experimental and simulation data[Moreau et al.,Plasma Phys.Control.Fusion 62,014013(2019);Kaymak et al.,Phys.Rev.Lett.117,035004(2016)]indicate that self-generated magnetic fields play an important role in enhancing t... Experimental and simulation data[Moreau et al.,Plasma Phys.Control.Fusion 62,014013(2019);Kaymak et al.,Phys.Rev.Lett.117,035004(2016)]indicate that self-generated magnetic fields play an important role in enhancing the flux and energy of relativistic electrons accelerated by ultra-intense laser pulse irradiation with nanostructured arrays.A fully relativistic analytical model for the generation of the magnetic field based on electron magneto-hydrodynamic description is presented here.The analytical model shows that this self-generated magnetic field originates in the nonparallel density gradient and fast electron current at the interfaces of a nanolayered target.A general formula for the self-generated magnetic field is found,which closely agrees with the simulation scaling over the relevant intensity range.The result is beneficial to the experimental designs for the interaction of the laser pulse with the nanostructured arrays to improve laser-to-electron energy coupling and the quality of forward hot electrons. 展开更多
关键词 nanolayered target self-generated magnetic field ultra-intense laser pulse
原文传递
Relativistic semi-classical theory of atom ionization in ultra-intense laser
12
作者 陈宝振 《Science China Mathematics》 SCIE 2001年第2期241-248,共8页
A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This ex... A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This expression, compared with non-relativistic expression, clearly shows the effects of the magnet vector in the laser, the non-dipole approximation and the relativistic mass-energy relation on the ionization processes. At the same time, we show that under some conditions the relativistic expression reduces to the non-relativistic expression of non-dipole approximation. At last, some possible applications of the relativistic theory are briefly stated. 展开更多
关键词 ultra-intense laser ionization of atom relativistic semi-classical theory Volkov solution
原文传递
Ultra-broadband pulse generation via hollow-core fiber compression and frequency doubling for ultra-intense lasers 被引量:3
13
作者 Yanyan Li Beijie Shao +8 位作者 Yujie Peng Junyu Qian Wenkai Li Xinliang Wang Xingyan Liu Xiaoming Lu Yi Xu Yuxin Leng Ruxin Li 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2023年第1期38-43,共6页
We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification,hollow-core fiber(HCF)and second harmonic generation processes.In this setup,the spectr... We demonstrate an ultra-broadband high temporal contrast infrared laser source based on cascaded optical parametric amplification,hollow-core fiber(HCF)and second harmonic generation processes.In this setup,the spectrum of an approximately 1.8μm laser pulse has near 1μm full bandwidth by employing an argon gas-filled HCF.Subsequently,after frequency doubling with cascaded crystals and dispersion compensation by a fused silica wedge pair,9.6 fs(~3cycles)and 150μJ pulses centered at 910 nm with full bandwidth of over 300 nm can be generated.The energy stability of the output laser pulse is excellent with 0.8%(root mean square)over 20 min,and the temporal contrast is>10^(12)at-10 ps before the main pulse.The excellent temporal and spatial characteristics and stability make this laser able to be used as a good seed source for ultra-intense and ultrafast laser systems. 展开更多
关键词 few-cycle laser high temporal contrast ULTRA-BROADBAND ultrafast laser
原文传递
Online target normal sheath acceleration proton beam stabilization at 1 Hz in ultra-intense laser–matter interaction 被引量:1
14
作者 Jose Luis Henares Michael Ehret +13 位作者 Jon Apiñnaniz Carlos Salgado-López José Antonio Pérez-Hernández María Luisa Berlanga Ana María Cives Fernández Evgeny Filippov Enrique García-García Rubén Hernández Martín Diego De Luis Pilar Puyuelo-Valdes Isabel Rodríguez-Pérez María Dolores Rodríguez Frías Iuliana-Mariana Vladisavlevici Giancarlo Gatti 《High Power Laser Science and Engineering》 CSCD 2024年第6期229-237,共9页
We introduce a versatile high-repetition-rate solid tape target system suitable for relativistic laser-plasma driven secondary sources. We demonstrate the operation and stability monitoring based on a petawatt laser f... We introduce a versatile high-repetition-rate solid tape target system suitable for relativistic laser-plasma driven secondary sources. We demonstrate the operation and stability monitoring based on a petawatt laser focused at 1 Hz.Experiments were carried out at the VEGA-3 laser system of the Centro de Láseres Pulsados facility where results for different tape materials and thicknesses are presented. Experimental proton spectra were recorded by a Thomson parabola spectrometer and a time-of-flight detector. In addition, non-invasive detectors, such as a target charging monitor and ionization chamber detectors, were tested as metrology for the stability of the source. Degradation of the proton signal at high-repetition-rate operation was observed and it was solved by online optimization of the relative focus position of the target and laser beam parameters. We report the use of the tape target for bursts of 1000 shots at1 Hz with mean cut-off energies of about 10 MeV in optimized interaction conditions. 展开更多
关键词 high-repetition-rate operation laser-plasma acceleration petawatt laser facility solid target
原文传递
Single-wavelength size focusing of ultra-intense ultrashort lasers with rotational hyperbolic mirrors
15
作者 Zhaoyang Li Yanqi Liu +2 位作者 Xiaoyang Guo Yuxin Leng Ruxin Li 《Advanced Photonics Nexus》 2024年第3期14-20,共7页
Compressing all the energy of a laser pulse into a spatiotemporal focal cube edged by the laser center wavelength will realize the highest intensity of an ultra-intense ultrashort laser,which is called theλ^(3) regim... Compressing all the energy of a laser pulse into a spatiotemporal focal cube edged by the laser center wavelength will realize the highest intensity of an ultra-intense ultrashort laser,which is called theλ^(3) regime or theλ^(3) laser.Herein,we introduced a rotational hyperbolic mirror—an important rotational conic section mirror with two foci—that is used as a secondary focusing mirror after a rotational parabolic mirror to reduce the focal spot size from several wavelengths to a single wavelength by significantly increasing the focusing angular aperture.Compared with the rotational ellipsoidal mirror,the first focal spot with a high intensity,as well as some unwanted strong-field effects,is avoided.The optimal focusing condition of this method is presented and the enhanced tight focusing for a femtosecond petawatt laser and theλ3 laser is numerically simulated,which can enhance the focused intensities of ultra-intense ultrashort lasers for laser physics. 展开更多
关键词 ultra-intense ultrashort lasers beam focusing focused intensity hyperbolic mirrors.
在线阅读 下载PDF
Effect of Addition of Er-TiB_(2)Dual-Phase Nanoparticles on Strength-Ductility of Al-Mn-Mg-Sc-Zr Alloy Prepared by Laser Powder Bed Fusion
16
作者 Li Suli Zhang Yanze +5 位作者 Yang Mengjia Zhang Longbo Xie Qidong Yang Laixia MaoFeng Chen Zhen 《稀有金属材料与工程》 北大核心 2026年第1期9-17,共9页
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w... A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively. 展开更多
关键词 Al-Mn-Mg-Sc-Zr alloy laser powder bed fusion nano-reinforcing phase synergistic enhancement
原文传递
Mechanical Anisotropy of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting
17
作者 Liu Junwei Liu Zhenya +3 位作者 Fan Caihe Ou Ling He Wuqiang Ma Wudan 《稀有金属材料与工程》 北大核心 2026年第1期35-46,共12页
To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the... To explore the formation mechanism of anisotropy in Ti-6Al-4V alloy fabricated by selective laser melting(SLM),the compressive mechanical properties,microhardness,microstructure,and crystallographic orientation of the alloy across different planes were investigated.The anisotropy of SLM-fabricated Ti-6Al-4V alloys was analyzed,and the electron backscatter diffraction technique was used to investigate the influence of different grain types and orientations on the stress-strain distribution at various scales.Results reveal that in room-temperature compression tests at a strain rate of 10^(-3) s^(-1),both the compressive yield strength and microhardness vary along the deposition direction,indicating a certain degree of mechanical property anisotropy.The alloy exhibits a columnar microstructure;along the deposition direction,the grains appear equiaxed,and they have internal hexagonal close-packed(hcp)α/α'martensitic structure.α'phase has a preferential orientation approximately along the<0001>direction.Anisotropy arises from the high aspect ratio of columnar grains,along with the weak texture of the microstructure and low symmetry of the hcp crystal structure. 展开更多
关键词 selective laser melting TI-6AL-4V ANISOTROPY crystal orientation
原文传递
Plasma Approach for Generating Ultra-Intense Single Attosecond Pulse
18
作者 吉亮亮 沈百飞 +5 位作者 张晓梅 王文鹏 郁亚红 王晓峰 易龙卿 时银 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第10期859-863,共5页
In our previous work, a plasma approach for single attosecond pulse (AP) generation was proposed. A few-cycle relativistic circularly polarized laser pulse will induce a single drastic oscillation of plasma boundary... In our previous work, a plasma approach for single attosecond pulse (AP) generation was proposed. A few-cycle relativistic circularly polarized laser pulse will induce a single drastic oscillation of plasma boundary, from which high-order harmonics and furthermore an ultra-intense single AP can be generated naturally after it is reflected. Analytical model and simulations both demonstrate that the process is mostly efficient as the pulse duration is close to the plasma responding time. The effects of plasma density ramp are analyzed here, suggesting that the proposal is still quite efficient with appropriate density gradient in the ramp. At last, a combined approach is employed to obtain single AP with 30 fs incident laser. The relatively large-duration pulse is firstly shortened by a density dropping thin foil, and then reflected from an overdense plasma target. One-dimensional simulation shows that a 600 as single light pulse is generated with peak intensity of 3×10^20 W/cm^2. 展开更多
关键词 laser-plasma interaction particle-in-cell simulation attosecond pulse relativistic circularly-polarized laser
在线阅读 下载PDF
Microstructure and Wear/corrosion Resistance of Stainless Steel Laser-alloyed with Mn+W_(2)C, Mn+NiWC and Mn+SiC 被引量:1
19
作者 ZHOU Rui DIAO Xiaogang SUN Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期283-294,共12页
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder... In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers. 展开更多
关键词 laser surface alloying stainless steel carbide type MICROSTRUCTURE wear and corrosion resistance
原文传递
CW laser damage of ceramics induced by air filament 被引量:1
20
作者 Chuan Guo Kai Li +9 位作者 Zelin Liu Yuyang Chen Junyang Xu Zhou Li Wenda Cui Changqing Song Cong Wang Xianshi Jia Ji'an Duan Kai Han 《Opto-Electronic Advances》 2025年第7期23-35,共13页
Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target dama... Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials. 展开更多
关键词 laser damage femtosecond laser CW laser combined pulse laser CERAMICS
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部