Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pa...Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.展开更多
Machining high-performance engineering materials,faces challenges including low machining efficiency,poor workpiece surface integrity,and rapid tool wear,which restrict high quality and efficient machining.Ultra-high-...Machining high-performance engineering materials,faces challenges including low machining efficiency,poor workpiece surface integrity,and rapid tool wear,which restrict high quality and efficient machining.Ultra-high-speed machining(UHSM)has been expected to address these issues.However,the material removal mechanisms involved in UHSM remain unclear and need further exploration.This paper reviews the criteria for evaluating the ductile and brittle behaviors of high-performance materials subjected to machining,as well as the developmental history of the material’s ductile-brittle transition induced by machining,proposing the concept of relativization of ductile-brittle property.Additionally,it further summarizes three typical material removal mechanisms:ductile-mode removal based on shear stress,brittle-mode removal based on tensile stress,and extrusion removal based on compressive stress,clarifying the universality of the brittle-mode removal.On this basis,this paper focuses on the discussion of the material removal mechanisms in UHSM,including high strain-rate-induced material embrittlement,UHSM-induced skin effect of damage,and the thermal effect in UHSM.Furthermore,it provides a detailed description of the typical characteristics of chip morphology in the ductile-brittle transition region(DBTR)under the high strain rate condition and,for the first time,elucidates the material removal mechanisms in the DBTR from a microstructural dislocation perspective,enriching the basic theory of UHSM.In the discussion section,it standardizes the definition for the UHSM,and explores the dislocation movement at high strain rates and the crack propagation in the UHSM.Finally,based on the current status of the UHSM technology,it summarizes the relevant research hotspots.For the first time,this paper brings up the brittle-mode removal mechanism under ultra-high-speed conditions,which is helpful to promote the UHSM for industrial applications.展开更多
The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 ...The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.展开更多
In the aerospace industry,the low-mass ultra-high-speed flywheel system play a critical role.In this paper,a kW-level Ultra-High Speed Permanent Magnet Synchronous Motor(UHSPMSM)as the core component of flywheel syste...In the aerospace industry,the low-mass ultra-high-speed flywheel system play a critical role.In this paper,a kW-level Ultra-High Speed Permanent Magnet Synchronous Motor(UHSPMSM)as the core component of flywheel system is proposed and analyzed with consideration of multiple physical fields,including electromagnetic characteristics,mechanical strength and rotor dynamics.The integrated support structure is put forward to improve rotation accuracy and operation stability of the UHSPMSM.Further,influence of the integrated support structure on critical speed is explored,and the key parameters such as support position and support stiffness are designed.Moreover,the rotor strength is analyzed by analytical model developed of rotor stress that can deal with multiple boundary types.Material and thickness of the sleeve are optimized,and range of interference value is accurately limited based on four extreme operating conditions.The 3-D Finite Element Model(FEM)is used to validate the strength characteristics and stress distribu-tion of rotor.A 1.5 kW-150000 r/min UHSPMSM with integrated support system is manufactured and tested.The feasibility of UHSPMSM proposed and the accuracy of analysis method are verified through electromagnetic,temperature rise and vibration characteristics test.The machine prototype realizes the load operation at rated speed and the multi-physical-field characteristics achieve the design specification.展开更多
Ultra-high-speed grinding(UHSG)is a significant and powerful machining method in view of the enhanced productivity and precision demands.Previous researches regarding formation mechanisms and crucial technologies are ...Ultra-high-speed grinding(UHSG)is a significant and powerful machining method in view of the enhanced productivity and precision demands.Previous researches regarding formation mechanisms and crucial technologies are comprehensively and thoroughly summarized to highlight state-of-art technology of UHSG.On the basis of the interdependence between process and machine innovations,theoretically,grinding mechanisms in strain hardening,strain rate strengthening,thermal softening,size effect and process characteristics need more in-depth studies to clarify the dominance of UHSG.Technically,CFRP wheel integrating with the brazed bonding has a prominent advantage in bonding strength and grit′s configuration over vitrified bonding,which would be superior in UHSG.Furthermore,external high pressure cooling combining with inner jet cooling methods,accompanied by scraper plates to alleviate the effect of air boundary,are crucial and practical measures for realizing effective cooling in UHSG.Grinding processes,especially those being related to grinding parameters and precise in-process measuring approaches,are also prerequisite for fitting and investigation of UHSG.展开更多
Ultra-high-speed, ultra-large-capacity and ultra-long-haul (3U) are the forever pursuit of optical communication. As a new mode of optical communication, 3U transmission can greatly promote next generation optical i...Ultra-high-speed, ultra-large-capacity and ultra-long-haul (3U) are the forever pursuit of optical communication. As a new mode of optical communication, 3U transmission can greatly promote next generation optical internet and broadband mobile communication network development and technological progress, therefore it has become the focus of international high-tech intellectual property competition ground. This paper introduces the scientific problems, key technologies and important achievements in 3U transmission research.展开更多
The operating speed of the commercial electromagnetic suspension(EMS)maglev train has been over 430 km/h,making it the fastest means of land transportation.With the increasing demands of people traveling,it is necessa...The operating speed of the commercial electromagnetic suspension(EMS)maglev train has been over 430 km/h,making it the fastest means of land transportation.With the increasing demands of people traveling,it is necessary to further improve the operating speed of maglev trains.Aiming to examine whether the existing EMS system can meet the requirements of ultra-highspeed operation(more than 600 km/h),the electromagnetic characteristics of an EMS linear motor under the operating speed of 600–1000 km/h fed by a square-wave voltage supply is investigated in this article.First,an electromagnetic field model of the EMS system under the square-wave voltage supply is established to investigate its electromagnetic performance,e.g.,the characteristics of phase current,the magnetic flux density,and the electromagnetic force.Second,the relationship between the harmonic components of the air-gap magnetic flux density and electromagnetic force is investigated using the two-dimensional fast Fourier transform(2D-FFT)to reveal the mechanism of electromagnetic force ripple.Third,to address the issues of excessive armature current density and significant electromagnetic force ripple,the linear motor is re-designed by enlarging the stator slot area and reshaping the mover's main magnetic poles.Furthermore,the Taguchi method is used to further improve the electromagnetic characteristics of the linear electric motor.Finally,the effectiveness of the proposed optimal design is validated by the finite-element analysis(FEA)based co-simulation.展开更多
基金supported by National Key Research and Development Program of China(2022YFB2804603,2022YFB2804605)National Natural Science Foundation of China(U21B2033)+4 种基金Fundamental Research Funds forthe Central Universities(2023102001,2024202002)National Key Laborato-ry of Shock Wave and Detonation Physics(JCKYS2024212111)China Post-doctoral Science Fund(2023T160318)Open Research Fund of JiangsuKey Laboratory of Spectral Imaging&Intelligent Sense(JSGP202105,JSGP202201)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX25_0695,SJCX25_0188)。
文摘Recent advancements in artificial intelligence have transformed three-dimensional(3D)optical imaging and metrology,enabling high-resolution and high-precision 3D surface geometry measurements from one single fringe pattern projection.However,the imaging speed of conventional fringe projection profilometry(FPP)remains limited by the native sensor refresh rates due to the inherent"one-to-one"synchronization mechanism between pattern projection and image acquisition in standard structured light techniques.Here,we present dual-frequency angular-multiplexed fringe projection profilometry(DFAMFPP),a deep learning-enabled 3D imaging technique that achieves high-speed,high-precision,and large-depth-range absolute 3D surface measurements at speeds 16 times faster than the sensor's native frame rate.By encoding multi-timeframe 3D information into a single multiplexed image using multiple pairs of dual-frequency fringes,high-accuracy absolute phase maps are reconstructed using specially trained two-stage number-theoretical-based deep neural networks.We validate the effectiveness of DFAMFPP through dynamic scene measurements,achieving 10,000 Hz 3D imaging of a running turbofan engine prototype with only a 625 Hz camera.By overcoming the sensor hardware bottleneck,DFAMFPP significantly advances high-speed and ultra-high-speed 3D imaging,opening new avenues for exploring dynamic processes across diverse scientific disciplines.
基金supported by the Shenzhen Science and Technology Innovation Commission(KQTD20190929172505711,JSGG20210420091802007,GJHZ20210705141807023,JSGG20220831110605009,and JCYJ20210324115413036)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120009)the Department of Guangdong Science and Technology(2019JC01Z031).
文摘Machining high-performance engineering materials,faces challenges including low machining efficiency,poor workpiece surface integrity,and rapid tool wear,which restrict high quality and efficient machining.Ultra-high-speed machining(UHSM)has been expected to address these issues.However,the material removal mechanisms involved in UHSM remain unclear and need further exploration.This paper reviews the criteria for evaluating the ductile and brittle behaviors of high-performance materials subjected to machining,as well as the developmental history of the material’s ductile-brittle transition induced by machining,proposing the concept of relativization of ductile-brittle property.Additionally,it further summarizes three typical material removal mechanisms:ductile-mode removal based on shear stress,brittle-mode removal based on tensile stress,and extrusion removal based on compressive stress,clarifying the universality of the brittle-mode removal.On this basis,this paper focuses on the discussion of the material removal mechanisms in UHSM,including high strain-rate-induced material embrittlement,UHSM-induced skin effect of damage,and the thermal effect in UHSM.Furthermore,it provides a detailed description of the typical characteristics of chip morphology in the ductile-brittle transition region(DBTR)under the high strain rate condition and,for the first time,elucidates the material removal mechanisms in the DBTR from a microstructural dislocation perspective,enriching the basic theory of UHSM.In the discussion section,it standardizes the definition for the UHSM,and explores the dislocation movement at high strain rates and the crack propagation in the UHSM.Finally,based on the current status of the UHSM technology,it summarizes the relevant research hotspots.For the first time,this paper brings up the brittle-mode removal mechanism under ultra-high-speed conditions,which is helpful to promote the UHSM for industrial applications.
基金The authors are grateful for the financial supports from Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology of China(JSJMYWX2020-01)Zhejiang Provincial Natural Science Foundation of China(LY18E050005)the Startup Foundation for Introducing Talent of Nanjing Institute of Industry Technology(YK18-13-02)of China.
文摘The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.
基金supported in part by the National Natural Science Foundation of China(No.52177048)the Natural Science Foundation of Jiangsu Province,China(No.BK20201297)+1 种基金the University Science Research Project of Jiangsu Province,China(No.21KJB120003)the Industry University Research Cooperation Project of Jiangsu Province,China(No.BY2021358).
文摘In the aerospace industry,the low-mass ultra-high-speed flywheel system play a critical role.In this paper,a kW-level Ultra-High Speed Permanent Magnet Synchronous Motor(UHSPMSM)as the core component of flywheel system is proposed and analyzed with consideration of multiple physical fields,including electromagnetic characteristics,mechanical strength and rotor dynamics.The integrated support structure is put forward to improve rotation accuracy and operation stability of the UHSPMSM.Further,influence of the integrated support structure on critical speed is explored,and the key parameters such as support position and support stiffness are designed.Moreover,the rotor strength is analyzed by analytical model developed of rotor stress that can deal with multiple boundary types.Material and thickness of the sleeve are optimized,and range of interference value is accurately limited based on four extreme operating conditions.The 3-D Finite Element Model(FEM)is used to validate the strength characteristics and stress distribu-tion of rotor.A 1.5 kW-150000 r/min UHSPMSM with integrated support system is manufactured and tested.The feasibility of UHSPMSM proposed and the accuracy of analysis method are verified through electromagnetic,temperature rise and vibration characteristics test.The machine prototype realizes the load operation at rated speed and the multi-physical-field characteristics achieve the design specification.
基金Supported by the National Natural Science Foundation of China(51235004)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Funding of Jiangsu Innovation Program for Graduate Education(CXZZ13_0154)
文摘Ultra-high-speed grinding(UHSG)is a significant and powerful machining method in view of the enhanced productivity and precision demands.Previous researches regarding formation mechanisms and crucial technologies are comprehensively and thoroughly summarized to highlight state-of-art technology of UHSG.On the basis of the interdependence between process and machine innovations,theoretically,grinding mechanisms in strain hardening,strain rate strengthening,thermal softening,size effect and process characteristics need more in-depth studies to clarify the dominance of UHSG.Technically,CFRP wheel integrating with the brazed bonding has a prominent advantage in bonding strength and grit′s configuration over vitrified bonding,which would be superior in UHSG.Furthermore,external high pressure cooling combining with inner jet cooling methods,accompanied by scraper plates to alleviate the effect of air boundary,are crucial and practical measures for realizing effective cooling in UHSG.Grinding processes,especially those being related to grinding parameters and precise in-process measuring approaches,are also prerequisite for fitting and investigation of UHSG.
文摘Ultra-high-speed, ultra-large-capacity and ultra-long-haul (3U) are the forever pursuit of optical communication. As a new mode of optical communication, 3U transmission can greatly promote next generation optical internet and broadband mobile communication network development and technological progress, therefore it has become the focus of international high-tech intellectual property competition ground. This paper introduces the scientific problems, key technologies and important achievements in 3U transmission research.
基金supported by the National Key R&D Program of China(Grant No.2023YFB4302500)。
文摘The operating speed of the commercial electromagnetic suspension(EMS)maglev train has been over 430 km/h,making it the fastest means of land transportation.With the increasing demands of people traveling,it is necessary to further improve the operating speed of maglev trains.Aiming to examine whether the existing EMS system can meet the requirements of ultra-highspeed operation(more than 600 km/h),the electromagnetic characteristics of an EMS linear motor under the operating speed of 600–1000 km/h fed by a square-wave voltage supply is investigated in this article.First,an electromagnetic field model of the EMS system under the square-wave voltage supply is established to investigate its electromagnetic performance,e.g.,the characteristics of phase current,the magnetic flux density,and the electromagnetic force.Second,the relationship between the harmonic components of the air-gap magnetic flux density and electromagnetic force is investigated using the two-dimensional fast Fourier transform(2D-FFT)to reveal the mechanism of electromagnetic force ripple.Third,to address the issues of excessive armature current density and significant electromagnetic force ripple,the linear motor is re-designed by enlarging the stator slot area and reshaping the mover's main magnetic poles.Furthermore,the Taguchi method is used to further improve the electromagnetic characteristics of the linear electric motor.Finally,the effectiveness of the proposed optimal design is validated by the finite-element analysis(FEA)based co-simulation.