In drilling ultra-deep wells,the drilling fluid circulation usually causes erosion damage to downhole casing and drilling tools.However,the extent and process of this damage to the downhole tools is intricate and less...In drilling ultra-deep wells,the drilling fluid circulation usually causes erosion damage to downhole casing and drilling tools.However,the extent and process of this damage to the downhole tools is intricate and less understood.In order to systematically evaluate and clarify this damage process for different types of drilling fluid contamination,this research uses a high-temperature drilling fluid damage device to simulate the damage caused to the casing/drilling tools by various drilling fluid under a field thermal gradient.The results show that the drilling fluid residues are mainly solid-phase particles and organic components.The degree of casing/tool damage decreases with an increase in bottom hole temperature,and the casing/tool is least damaged within a temperature range of 150–180°C.Moreover,the surface of the casing/tool damaged by different types of drilling fluid shows different roughness,and the wettability of drilling fluid on the casing/tool surface increases with an increase in the degree of roughness.Oil-based drilling fluid have the strongest adhesion contamination on casing/drilling tools.In contrast,polysulfonated potassium drilling fluid and super-micro drilling fluid have the most potent erosion damage on casing/drilling tools.By analyzing the damage mechanism,it was established that the damage was mainly dominated by the abrasive wearing from solid-phase particles in concert with corrosion ions in drilling fluid,with solids producing many abrasion marks and corrosive ions causing a large number of pits.Clarifying drilling fluid's contamination and damage mechanism is significant in guiding the wellbore cleaning process and cutting associated costs.展开更多
Light oil and gas reservoirs are abundant in the Ordovician marine carbonate reservoir in Shunbei Oilfield,Tarim Basin.This presents a compelling geological puzzle,as ultra-deep reservoirs undergo intense alteration a...Light oil and gas reservoirs are abundant in the Ordovician marine carbonate reservoir in Shunbei Oilfield,Tarim Basin.This presents a compelling geological puzzle,as ultra-deep reservoirs undergo intense alteration and complex petroleum accumulation processes.A comprehensive suite of geochemical analyses,including molecular components,carbon isotope composition,homogenization temperature of saline inclusions,and burial-thermal history of single wells,was conducted to elucidate the genesis of these ancient reservoirs.Three petroleum filling events have been identified in the study area:Late Caledonian,Hercynian-Indosinian,and Himalayan,through analysis of homogenization temperatures of brine inclusions and burial-thermal histories.Additionally,the oil in the study area has undergone significant alteration processes such as biodegradation,thermal alteration,mixing,evaporative fractionation,and gas invasion.This study particularly emphasizes the influential role of Himalayan gas filling-induced evaporation fractionation and gas invasion in shaping the present petroleum phase distribution.Furthermore,analysis of light hydrocarbon and diamondoid parameters indicates the oil within the study area is at a high maturity stage,with equivalent vitrinite reflectance values ranging from 1.48%to 1.99%.Additionally,the analysis of light hydrocarbons,aromatics,and thiadiamondoids indicates that TSR should occur in reservoirs near the gypsum-salt layers in the Cambrian.The existence of the Cambrian petroleum system in the study area is strongly confirmed when considering the analysis results of natural gas type(oil cracking gas),evaporative fractionation,and gas invasion.Permian local thermal anomalies notably emerge as a significant factor contributing to the destruction of biomarkers in oil.For oil not subject to transient,abnormal thermal events,biomarker reliability extends to at least 190℃.In conclusion,examining the special formation mechanisms and conditions of various secondary processes can offer valuable insights for reconstructing the history of petroleum accumulation in ultradeep reservoirs.This research provides a scientific foundation for advancing our knowledge of petroleum systems and underscores the importance of hydrocarbon geochemistry in unraveling ultra-deep,complex geological phenomena.展开更多
To optimize the bit selection for large-diameter wellbore in the upper section of an ultra-deep well S-1,a full-well dynamic model integrating drill string vibration and bit rock-breaking was established and then veri...To optimize the bit selection for large-diameter wellbore in the upper section of an ultra-deep well S-1,a full-well dynamic model integrating drill string vibration and bit rock-breaking was established and then verified using measured vibration data of drilling tools and actual rate of penetration(ROP)from Well HT-1 in northern Sichuan Basin.This model was employed to calculate and analyze drill string dynamic characteristics during large-diameter wellbore drilling in the Jurassic Penglaizhen Formation of Well S-1,followed by bit optimization.Research results show that during the drilling in Penglaizhen Formation of Well S-1,considering both the ROP of six candidate bits and the lateral/axial/torsional vibration characteristics of downhole tools,the six-blade dual-row cutter bit with the fastest ROP(average 7.12 m/h)was optimally selected.When using this bit,the downhole tool vibration levels remained at medium-low values.Field data showed over 90%consistency between actual ROP data and dynamic model calculation results after bit placement,demonstrating that the model can be used for bit program screening.展开更多
This study comprehensively uses various methods such as production dynamic analysis,fluid inclusion thermometry and carbon-oxygen isotopic compositions testing,based on outcrop,core,well-logging,3D seismic,geochemistr...This study comprehensively uses various methods such as production dynamic analysis,fluid inclusion thermometry and carbon-oxygen isotopic compositions testing,based on outcrop,core,well-logging,3D seismic,geochemistry experiment and production test data,to systematically explore the control mechanisms of structure and fluid on the scale,quality,effectiveness and connectivity of ultra-deep fault-controlled carbonate fractured-vuggy reservoirs in the Tarim Basin.The results show that reservoir scale is influenced by strike-slip fault scale,structural position,and mechanical stratigraphy.Larger faults tend to correspond to larger reservoir scales.The reservoir scale of contractional overlaps is larger than that of extensional overlaps,while pure strike-slip segments are small.The reservoir scale is enhanced at fault intersection,bend,and tip segments.Vertically,the heterogeneity of reservoir development is controlled by mechanical stratigraphy,with strata of higher brittleness indices being more conducive to the development of fractured-vuggy reservoirs.Multiple phases of strike-slip fault activity and fluid alterations contribute to fractured-vuggy reservoir effectiveness evolution and heterogeneity.Meteoric water activity during the Late Caledonian to Early Hercynian period was the primary phase of fractured-vuggy reservoir formation.Hydrothermal activity in the Late Hercynian period further intensified the heterogeneity of effective reservoir space distribution.The study also reveals that fractured-vuggy reservoir connectivity is influenced by strike-slip fault structural position and present in-situ stress field.The reservoir connectivity of extensional overlaps is larger than that of pure strike-slip segments,while contractional overlaps show worse reservoir connectivity.Additionally,fractured-vuggy reservoirs controlled by strike-slip faults that are nearly parallel to the present in-situ stress direction exhibit excellent connectivity.Overall,high-quality reservoirs are distributed at the fault intersection of extensional overlaps,the central zones of contractional overlaps,pinnate fault zones at intersection,bend,and tip segments of pure strike-slip segments.Vertically,they are concentrated in mechanical stratigraphy with high brittleness indices.展开更多
The ultra-deep(deeper than 8000 m)petroleum in the platform-basin zones of the Tarim Basin has been found mainly in the Lower Paleozoic reservoirs located to the east of the strike-slip fault F5 in the north depressio...The ultra-deep(deeper than 8000 m)petroleum in the platform-basin zones of the Tarim Basin has been found mainly in the Lower Paleozoic reservoirs located to the east of the strike-slip fault F5 in the north depression.However,the source and exploration potential of the ultra-deep petroleum in the Cambrian on the west of F5 are still unclear.Through the analysis of lithofacies and biomarkers,it is revealed that there are at least three kinds of isochronous source rocks(SRs)in the Cambrian Newfoundland Series in Tarim Basin,which were deposited in three sedimentary environments,i.e.sulfide slope,deep-water shelf and restricted bay.In 2024,Well XT-1 in the western part of northern Tarim Basin has yielded a high production of condensate from the Cambrian.In the produced oil,entire aryl-isoprenoid alkane biomarkers were detected,but triaromatic dinosterane was absent.This finding is well consistent with the geochemical characteristics of the Newfoundland sulfidized slope SRs represented by those in wells LT-1 and QT-1,suggesting that the Newfoundland SRs are the main source of the Cambrian petroleum discovered in Well XT-1.Cambrian crude oil of Well XT-1 also presents the predominance of C29 steranes and is rich in long-chain tricyclic terpanes(up to C39),which can be the indicators for effectively distinguishing lithofacies such as siliceous mudstone and carbonate rock.Combined with the analysis of hydrocarbon accumulation in respect of conduction systems including thrust fault and strike-slip fault,it is found that the area to the west of F5 is possible to receive effective supply of hydrocarbons from the Cambrian Newfoundland SRs in Manxi hydrocarbon-generation center.This finding suggests that the area to the west of F5 will be a new target of exploration in the Cambrian ultra-deep structural-lithologic reservoirs in the Tarim Basin,in addition to the Cambrian ultra-deep platform-margin facies-controlled reservoirs in the eastern part of the basin.展开更多
The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and signi...The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and significantly variable gas contents of the drilled shales.Excitingly,the first major breakthrough in deep and ultra-deep Lower Cambrian shale gas was made recently in the well Z201 in the southern Sichuan Basin,with a gas yield exceeding 73×10^(4)m^(3)/d.The success of well Z201 provides a favorable geological case to reveal the distinct enrichment mechanism of deep and ultra-deep Lower Cambrian shale gas.In this study,at drilling site of well Z201,fresh shale core samples with different gasin-place contents were collected,and their geochemical,pore development and water-bearing characteristics were analyzed systematically.The results showed that the Z201 organic-rich shales reached an overmature stage,with an average Raman maturity of 3.70%.The Z201 shales with high gas-in-place contents are mainly located in the Qiongzhusi 12section and the upper Qiongzhusi 11section,with an average gas-in-place content of 10.08 cm^(3)/g.Compared to the shales with low gas-in-place contents,the shales with high gas-in-place contents exhibit higher total organic carbon contents,greater porosities,and lower water saturations,providing more effective pore spaces for shale gas enrichment.The effective pore structures of the deep and ultra-deep Lower Cambrian shales are the primary factors affecting their gas-in-place contents.Similar to the shales with high gas-in-place contents of well Z201,the deep and ultra-deep Lower Cambrian shales in the Mianyang-Changning intracratonic sag,especially in the Ziyang area,generally developed in deep-water shelf facies with high total organic carbon contents and thick sedimentary thickness,providing favorable conditions for the development and preservation of effective pores.Therefore,they are the most promising targets for Lower Cambrian shale gas exploration.展开更多
To address the challenges in studying the pore formation and evolution processes,and unclear preservation mechanisms of deep to ultra-deep carbonate rocks,a high-temperature and high-pressure visualization simulation ...To address the challenges in studying the pore formation and evolution processes,and unclear preservation mechanisms of deep to ultra-deep carbonate rocks,a high-temperature and high-pressure visualization simulation experimental device was developed for ultra-deep carbonate reservoirs.Carbonate rock samples from the Sichuan Basin and Tarim Basin were used to simulate the dissolution-precipitation process of deep to ultra-deep carbonate reservoirs in an analogous geological setting.This unit comprises four core modules:an ultra-high temperature,high pressure triaxial stress core holder module(temperature higher than 300°C,pressure higher than 150 MPa),a multi-stage continuous flow module with temperature-pressure regulation,an ultra-high temperature-pressure sapphire window cell and an in-situ high-temperature-pressure fluid property measurement module and real-time ultra-high temperature-pressure permeability detection module.The new experimental device was used for simulation experiment,the geological insights were obtained in three aspects.First,the pore-throat structure of carbonate is controlled by lithology and initial pore-throat structure,and fluid type,concentration and dissolution duration determine the degree of dissolution.The dissolution process exhibits two evolution patterns.The dissolution scale is positively correlated to the temperature and pressure,and the pore-forming peak period aligns well with the hydrocarbon generation peak period.Second,the dissolution potential of dolomite in an open flow system is greater than that of limestone,and secondary dissolved pores formed continuously are controlled by the type and concentration of acidic fluids and the initial physical properties.These pores predominantly distribute along pre-existing pore/fracture zones.Third,in a nearly closed diagenetic system,after the chemical reaction between acidic fluids and carbonate rock reaches saturation and dynamic equilibrium,the pore structure no longer changes,keeping pre-existing pores well-preserved.These findings have important guiding significance for the evaluation of pore-throat structure and development potential of deep to ultra-deep carbonate reservoirs,and the prediction of main controlling factors and distribution of high-quality carbonate reservoirs.展开更多
Based on petroleum exploration and new progress of oil and gas geology study in the Qiongdongnan Basin,combined with seismic,logging,drilling,core,sidewall coring,geochemistry data,a systematic study is conducted on t...Based on petroleum exploration and new progress of oil and gas geology study in the Qiongdongnan Basin,combined with seismic,logging,drilling,core,sidewall coring,geochemistry data,a systematic study is conducted on the source,reservoir-cap conditions,trap types,migration and accumulation characteristics,enrichment mechanisms,and reservoir formation models of ultra-deep water and ultra-shallow natural gas,taking the Lingshui 36-1 gas field as an example.(1)The genetic types of the ultra-deep water and ultra-shallow natural gas in the Qiongdongnan Basin include thermogenic gas and biogenic gas,and dominated by thermogenic gas.(2)The reservoirs are mainly composed of the Quaternary deep-water submarine fan sandstone.(3)The types of cap rocks include deep-sea mudstone,mass transport deposits mudstone,and hydrate-bearing formations.(4)The types of traps are mainly lithological,and also include structural-lithological traps.(5)The migration channels include vertical transport channels such as faults,gas chimneys,fracture zones,and lateral transport layers such as large sand bodies and unconformity surfaces,forming a single or composite transport framework.A new natural gas accumulation model is proposed for ultra-deep water and ultra-shallow layers,that is,dual source hydrocarbon supply,gas chimney and submarine fan composite migration,deep-sea mudstone-mass transport deposits mudstone-hydrate-bearing strata ternary sealing,late dynamic accumulation,and large-scale enrichment at ridges.The new understanding obtained from the research has reference and enlightening significance for the next step of deepwater and ultra-shallow layers,as well as oil and gas exploration in related fields or regions.展开更多
Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es...Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.展开更多
In ultra-deep and large well sections,high collapse stresses and diminished annular return velocity present significant challenges to wellbore cleaning.With increasing depth,rising temperature and pressure constrain t...In ultra-deep and large well sections,high collapse stresses and diminished annular return velocity present significant challenges to wellbore cleaning.With increasing depth,rising temperature and pressure constrain the regulation of displacement and drilling fluid rheology,impairing the fluid’s capacity to transport cuttings effectively.A precise understanding of cuttings settlement behavior and terminal velocity is therefore essential for optimizing their removal.This study accounts for variations in wellbore temperature and pressure,incorporates non-spherical cuttings and wellbore diameter parameters,and develops accordingly a simplified model to predict terminal settlement velocity.Thecuttings carrying ratio is introduced as a metric for evaluatingwellbore cleanliness.Findings reveal that temperature and pressure fluctuations can alter terminal velocity by up to 3.4%.Cuttings shape plays a crucial role,with block-shaped cuttings requiring higher annular return velocity than flake-shaped ones at the same carrying ratio.As wellbore size increases,the minimum required carrying flow rate rises nonlinearly,though the rate of increase gradually declines.For a Φ444.5mmwellbore,a carrying ratio of at least 0.6 is recommended.Terminal velocity decreases with increasing consistency coefficient,particularly in high-viscosity regimes.The proposed carrying ratio offers a more accurate and practical assessment of wellbore cleanliness.展开更多
Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d...Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.展开更多
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u...Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.展开更多
The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,hi...The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness.展开更多
The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth ...The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.展开更多
Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petr...Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petroleum in China have been elaborated.By discussing the development of“source-reservoir-seal”controlled by the breakup and assembly of supercontinents and regional tectonic movements,and the mechanisms of petroleum generation and accumulation controlled by temperature-pressure system and fault conduit system,Both the South China and Tarim blocks passed through the intertropical convergence zone(ITCZ)of the low-latitude Hadley Cell twice during their drifts,and formed hydrocarbon source rocks with high quality.It is proposed that deep tectonic activities and surface climate evolution jointly controlled the types and stratigraphic positions of ultra-deep hydrocarbon source rocks,reservoirs,and seals in the Sichuan and Tarim basins,forming multiple petroleum systems in the Ediacaran-Cambrian,Cambrian-Ordovician,Cambrian-Permian and Permian-Triassic strata.The matching degree of source-reservoir-seal,the type of organic matter in source rocks,the deep thermal regime of basin,and the burial-uplift process across tectonic periods collectively control the entire process from the generation to the accumulation of oil and gas.Three types of oil and gas enrichment models are formed,including near-source accumulation in platform marginal zones,distant-source accumulation in high-energy beaches through faults,and three-dimensional accumulation in strike-slip fault zones,which ultimately result in the multi-layered natural gas enrichment in ultra-deep layers of the Sichuan Basin and co-enrichment of oil and gas in the ultra-deep layers of the Tarim Basin.展开更多
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores...A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.展开更多
Based on drilling and logging data,as well as geological experiments,the geological characteristics and factors controlling high-yield and enrichment of hydrocarbons in ultra-deep clastic rocks in the Linhe Depression...Based on drilling and logging data,as well as geological experiments,the geological characteristics and factors controlling high-yield and enrichment of hydrocarbons in ultra-deep clastic rocks in the Linhe Depression,Hetao Basin,are studied.The results are obtained in four aspects.First,the inland saline lacustrine high-quality source rocks developed in the Paleogene in the Linhe Depression have the characteristics of early maturity,early expulsion,high hydrocarbon yield,and continuous and efficient hydrocarbon generation,providing an important resource basis for the formation of ultra-high pressure and high-yield reservoirs.Second,the weak compaction,early charging,and weak cementation for pore-preserving,together with the ultra-high pressure for pore-preserving and fracture expansion to improve the permeability,leads to the development of high-quality reservoirs with medium porosity(greater than 15%)and medium permeability(up to 226×10^(-3)μm^(2))in the ultra-deep strata(deeper than 6500 m),which represents a greatly expanded space for oil and gas exploration.Third,the Linhe Formation adjacent to the trough exhibits a low net-to-gross(NTG)and good reservoir-caprock assemblage,and it is overlaid by very thick high-quality mudstone caprock,which are conducive to the continuous and efficient hydrocarbon generation and pressurization and the formation of ultra-high pressure oil and gas reservoirs.Fourth,the most favorable targets for ultra-deep exploration are the zones adjacent to the hydrocarbon generating center of the Paleogene Linhe Formation and with good tectonic setting and structural traps,mainly including the Xinglong faulted structural zone and the Nalinhu faulted buried-hill zone.The significant breakthrough of ultra-deep oil and gas exploration in the Linhe Depression reveals the good potential of ultra-deep clastic rocks in this area,and provides valuable reference for oil and gas exploration of ultra-deep clastic rocks in other areas.展开更多
Based on the data from 3D seismic surveys,drilling,sidewall coring,thin sections,and tests,this paper analyzes Meso-Cenozoic geotectonic dynamics,buried-hill reservoir characteristics,and differential enrichment patte...Based on the data from 3D seismic surveys,drilling,sidewall coring,thin sections,and tests,this paper analyzes Meso-Cenozoic geotectonic dynamics,buried-hill reservoir characteristics,and differential enrichment patterns of oil and gas in the buried hills,as well as case studies of typical reservoirs,to systematically discuss the conditions required for the formation of buried-hills and reservoirs and accumulations in the large oil and gas fields in deep to ultra-deep composite buried hills in the Bohai Sea..The key findings are as follows.First,deep to ultra-deep composite buried hills developed in the offshore Bohai Bay Basin primarily due to the double-episode destruction of the North China Craton in the Yanshanian and Himalayan.The Tanlu Fault's activity and the destruction of the North China Craton worked together to create the destruction center,which moved and converged episodically from the Bohai Bay Basin's margins towards the Bozhong Sag.This led to the formation of two development zones for composite buried hills and an orderly process of mountain-building within the offshore Bohai Bay Basin and subsequently two development zones for composite buried hills,i.e.the middle and inner rim zones within the Bozhong Depression.Second,under the coupling of favorable lithologies and multi-stage structures,the middle and inner rim zones are favorable for the formation of reservoirs in fluid dissolution-pore/fracture zones underlying the weathering crust.Third,Massive hydrocarbons were produced along the middle and inner rim zones during the Episode Ⅱ craton destruction,which caused overpressure.These hydrocarbons then moved to and accumulated in the composite buried hills.Excellent conditions for the accumulation of hydrocarbons are still present in the interior and lower portions of these buried hills.These results encourage a change in buried hill research to investigate composite buried hills in three dimensions.It should be noted that the multi-stage volcanic structures in the inner rim zone of the Sag and the deep to ultra-deep composite buried hill interiors in the middle rim zone are significant successor areas for further Bohai Sea exploration.展开更多
Fracture effectiveness plays a key role in gas productivity of ultra-deep tight sandstone reservoirs,Kuqa depression,Tarim Basin.Based on cores,thin sections,well logging,well testing and production data,the study eva...Fracture effectiveness plays a key role in gas productivity of ultra-deep tight sandstone reservoirs,Kuqa depression,Tarim Basin.Based on cores,thin sections,well logging,well testing and production data,the study evaluated fracture effectiveness and illustrated its impacts on gas productivity.High-angle and vertical shear fractures are the most important types.Distribution of effective fractures shows great heterogeneous.Fracture effectiveness is influenced by tectonism,diagenesis and in-situ stress.Earlier fractures or fractures in close to gypsum rock are easier to be filled.Completely filled fractures can be reopened under late tectonism.Dissolution improves local fracture effectiveness.Minerals spanning fracture surfaces protect fracture effectiveness from late compression.Fractures filled with calcite can be activated by acidification.Effective fractures parallel to maximum horizontal principal compressive stress direction show larger aperture.Overpressure can decrease the effective normal stress to maintain fracture effectiveness.With exploitation,decline in pore pressure reduces fracture effectiveness.Linear density,aperture,and strike of effective fractures influence gas productivity.Effective fractures greatly enhance matrix permeability.Therefore,more abundant and larger aperture fractures are always corresponded to higher productivity.However,effective fractures also facilitate late water invasion,especially,both mutually parallel.Intense water invasion leads to rapidly declines in productivity.展开更多
Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ...Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.展开更多
基金support and funding from the CNPC Project(2021ZG10)National Natural Science Foundation of China(No.52174047)Sinopec Project(No.P23138).
文摘In drilling ultra-deep wells,the drilling fluid circulation usually causes erosion damage to downhole casing and drilling tools.However,the extent and process of this damage to the downhole tools is intricate and less understood.In order to systematically evaluate and clarify this damage process for different types of drilling fluid contamination,this research uses a high-temperature drilling fluid damage device to simulate the damage caused to the casing/drilling tools by various drilling fluid under a field thermal gradient.The results show that the drilling fluid residues are mainly solid-phase particles and organic components.The degree of casing/tool damage decreases with an increase in bottom hole temperature,and the casing/tool is least damaged within a temperature range of 150–180°C.Moreover,the surface of the casing/tool damaged by different types of drilling fluid shows different roughness,and the wettability of drilling fluid on the casing/tool surface increases with an increase in the degree of roughness.Oil-based drilling fluid have the strongest adhesion contamination on casing/drilling tools.In contrast,polysulfonated potassium drilling fluid and super-micro drilling fluid have the most potent erosion damage on casing/drilling tools.By analyzing the damage mechanism,it was established that the damage was mainly dominated by the abrasive wearing from solid-phase particles in concert with corrosion ions in drilling fluid,with solids producing many abrasion marks and corrosive ions causing a large number of pits.Clarifying drilling fluid's contamination and damage mechanism is significant in guiding the wellbore cleaning process and cutting associated costs.
基金funded by the National Natural Science Foundations of China(Grant No.42173054)。
文摘Light oil and gas reservoirs are abundant in the Ordovician marine carbonate reservoir in Shunbei Oilfield,Tarim Basin.This presents a compelling geological puzzle,as ultra-deep reservoirs undergo intense alteration and complex petroleum accumulation processes.A comprehensive suite of geochemical analyses,including molecular components,carbon isotope composition,homogenization temperature of saline inclusions,and burial-thermal history of single wells,was conducted to elucidate the genesis of these ancient reservoirs.Three petroleum filling events have been identified in the study area:Late Caledonian,Hercynian-Indosinian,and Himalayan,through analysis of homogenization temperatures of brine inclusions and burial-thermal histories.Additionally,the oil in the study area has undergone significant alteration processes such as biodegradation,thermal alteration,mixing,evaporative fractionation,and gas invasion.This study particularly emphasizes the influential role of Himalayan gas filling-induced evaporation fractionation and gas invasion in shaping the present petroleum phase distribution.Furthermore,analysis of light hydrocarbon and diamondoid parameters indicates the oil within the study area is at a high maturity stage,with equivalent vitrinite reflectance values ranging from 1.48%to 1.99%.Additionally,the analysis of light hydrocarbons,aromatics,and thiadiamondoids indicates that TSR should occur in reservoirs near the gypsum-salt layers in the Cambrian.The existence of the Cambrian petroleum system in the study area is strongly confirmed when considering the analysis results of natural gas type(oil cracking gas),evaporative fractionation,and gas invasion.Permian local thermal anomalies notably emerge as a significant factor contributing to the destruction of biomarkers in oil.For oil not subject to transient,abnormal thermal events,biomarker reliability extends to at least 190℃.In conclusion,examining the special formation mechanisms and conditions of various secondary processes can offer valuable insights for reconstructing the history of petroleum accumulation in ultradeep reservoirs.This research provides a scientific foundation for advancing our knowledge of petroleum systems and underscores the importance of hydrocarbon geochemistry in unraveling ultra-deep,complex geological phenomena.
基金Supported by the National Natural Science Foundation of China(52225401)。
文摘To optimize the bit selection for large-diameter wellbore in the upper section of an ultra-deep well S-1,a full-well dynamic model integrating drill string vibration and bit rock-breaking was established and then verified using measured vibration data of drilling tools and actual rate of penetration(ROP)from Well HT-1 in northern Sichuan Basin.This model was employed to calculate and analyze drill string dynamic characteristics during large-diameter wellbore drilling in the Jurassic Penglaizhen Formation of Well S-1,followed by bit optimization.Research results show that during the drilling in Penglaizhen Formation of Well S-1,considering both the ROP of six candidate bits and the lateral/axial/torsional vibration characteristics of downhole tools,the six-blade dual-row cutter bit with the fastest ROP(average 7.12 m/h)was optimally selected.When using this bit,the downhole tool vibration levels remained at medium-low values.Field data showed over 90%consistency between actual ROP data and dynamic model calculation results after bit placement,demonstrating that the model can be used for bit program screening.
基金Supported by the National Natural Science Foundation of China(U21B2062).
文摘This study comprehensively uses various methods such as production dynamic analysis,fluid inclusion thermometry and carbon-oxygen isotopic compositions testing,based on outcrop,core,well-logging,3D seismic,geochemistry experiment and production test data,to systematically explore the control mechanisms of structure and fluid on the scale,quality,effectiveness and connectivity of ultra-deep fault-controlled carbonate fractured-vuggy reservoirs in the Tarim Basin.The results show that reservoir scale is influenced by strike-slip fault scale,structural position,and mechanical stratigraphy.Larger faults tend to correspond to larger reservoir scales.The reservoir scale of contractional overlaps is larger than that of extensional overlaps,while pure strike-slip segments are small.The reservoir scale is enhanced at fault intersection,bend,and tip segments.Vertically,the heterogeneity of reservoir development is controlled by mechanical stratigraphy,with strata of higher brittleness indices being more conducive to the development of fractured-vuggy reservoirs.Multiple phases of strike-slip fault activity and fluid alterations contribute to fractured-vuggy reservoir effectiveness evolution and heterogeneity.Meteoric water activity during the Late Caledonian to Early Hercynian period was the primary phase of fractured-vuggy reservoir formation.Hydrothermal activity in the Late Hercynian period further intensified the heterogeneity of effective reservoir space distribution.The study also reveals that fractured-vuggy reservoir connectivity is influenced by strike-slip fault structural position and present in-situ stress field.The reservoir connectivity of extensional overlaps is larger than that of pure strike-slip segments,while contractional overlaps show worse reservoir connectivity.Additionally,fractured-vuggy reservoirs controlled by strike-slip faults that are nearly parallel to the present in-situ stress direction exhibit excellent connectivity.Overall,high-quality reservoirs are distributed at the fault intersection of extensional overlaps,the central zones of contractional overlaps,pinnate fault zones at intersection,bend,and tip segments of pure strike-slip segments.Vertically,they are concentrated in mechanical stratigraphy with high brittleness indices.
基金Supported by the CNPC Science and Technology Project(2024ZZ0203)。
文摘The ultra-deep(deeper than 8000 m)petroleum in the platform-basin zones of the Tarim Basin has been found mainly in the Lower Paleozoic reservoirs located to the east of the strike-slip fault F5 in the north depression.However,the source and exploration potential of the ultra-deep petroleum in the Cambrian on the west of F5 are still unclear.Through the analysis of lithofacies and biomarkers,it is revealed that there are at least three kinds of isochronous source rocks(SRs)in the Cambrian Newfoundland Series in Tarim Basin,which were deposited in three sedimentary environments,i.e.sulfide slope,deep-water shelf and restricted bay.In 2024,Well XT-1 in the western part of northern Tarim Basin has yielded a high production of condensate from the Cambrian.In the produced oil,entire aryl-isoprenoid alkane biomarkers were detected,but triaromatic dinosterane was absent.This finding is well consistent with the geochemical characteristics of the Newfoundland sulfidized slope SRs represented by those in wells LT-1 and QT-1,suggesting that the Newfoundland SRs are the main source of the Cambrian petroleum discovered in Well XT-1.Cambrian crude oil of Well XT-1 also presents the predominance of C29 steranes and is rich in long-chain tricyclic terpanes(up to C39),which can be the indicators for effectively distinguishing lithofacies such as siliceous mudstone and carbonate rock.Combined with the analysis of hydrocarbon accumulation in respect of conduction systems including thrust fault and strike-slip fault,it is found that the area to the west of F5 is possible to receive effective supply of hydrocarbons from the Cambrian Newfoundland SRs in Manxi hydrocarbon-generation center.This finding suggests that the area to the west of F5 will be a new target of exploration in the Cambrian ultra-deep structural-lithologic reservoirs in the Tarim Basin,in addition to the Cambrian ultra-deep platform-margin facies-controlled reservoirs in the eastern part of the basin.
基金supported by the National Natural Science Foundation of China(41925014).
文摘The Lower Cambrian shales in the Sichuan Basin are considered one of the most promising shale gas resources in China.However,large-scale commercial development has not been achieved due to the relatively low and significantly variable gas contents of the drilled shales.Excitingly,the first major breakthrough in deep and ultra-deep Lower Cambrian shale gas was made recently in the well Z201 in the southern Sichuan Basin,with a gas yield exceeding 73×10^(4)m^(3)/d.The success of well Z201 provides a favorable geological case to reveal the distinct enrichment mechanism of deep and ultra-deep Lower Cambrian shale gas.In this study,at drilling site of well Z201,fresh shale core samples with different gasin-place contents were collected,and their geochemical,pore development and water-bearing characteristics were analyzed systematically.The results showed that the Z201 organic-rich shales reached an overmature stage,with an average Raman maturity of 3.70%.The Z201 shales with high gas-in-place contents are mainly located in the Qiongzhusi 12section and the upper Qiongzhusi 11section,with an average gas-in-place content of 10.08 cm^(3)/g.Compared to the shales with low gas-in-place contents,the shales with high gas-in-place contents exhibit higher total organic carbon contents,greater porosities,and lower water saturations,providing more effective pore spaces for shale gas enrichment.The effective pore structures of the deep and ultra-deep Lower Cambrian shales are the primary factors affecting their gas-in-place contents.Similar to the shales with high gas-in-place contents of well Z201,the deep and ultra-deep Lower Cambrian shales in the Mianyang-Changning intracratonic sag,especially in the Ziyang area,generally developed in deep-water shelf facies with high total organic carbon contents and thick sedimentary thickness,providing favorable conditions for the development and preservation of effective pores.Therefore,they are the most promising targets for Lower Cambrian shale gas exploration.
基金Supported by the Joint Fund for Enterprise Innovation and Development of the National Natural Science Foundation of China(U23B20154)General Program of the National Natural Science Foundation of China(42372169)。
文摘To address the challenges in studying the pore formation and evolution processes,and unclear preservation mechanisms of deep to ultra-deep carbonate rocks,a high-temperature and high-pressure visualization simulation experimental device was developed for ultra-deep carbonate reservoirs.Carbonate rock samples from the Sichuan Basin and Tarim Basin were used to simulate the dissolution-precipitation process of deep to ultra-deep carbonate reservoirs in an analogous geological setting.This unit comprises four core modules:an ultra-high temperature,high pressure triaxial stress core holder module(temperature higher than 300°C,pressure higher than 150 MPa),a multi-stage continuous flow module with temperature-pressure regulation,an ultra-high temperature-pressure sapphire window cell and an in-situ high-temperature-pressure fluid property measurement module and real-time ultra-high temperature-pressure permeability detection module.The new experimental device was used for simulation experiment,the geological insights were obtained in three aspects.First,the pore-throat structure of carbonate is controlled by lithology and initial pore-throat structure,and fluid type,concentration and dissolution duration determine the degree of dissolution.The dissolution process exhibits two evolution patterns.The dissolution scale is positively correlated to the temperature and pressure,and the pore-forming peak period aligns well with the hydrocarbon generation peak period.Second,the dissolution potential of dolomite in an open flow system is greater than that of limestone,and secondary dissolved pores formed continuously are controlled by the type and concentration of acidic fluids and the initial physical properties.These pores predominantly distribute along pre-existing pore/fracture zones.Third,in a nearly closed diagenetic system,after the chemical reaction between acidic fluids and carbonate rock reaches saturation and dynamic equilibrium,the pore structure no longer changes,keeping pre-existing pores well-preserved.These findings have important guiding significance for the evaluation of pore-throat structure and development potential of deep to ultra-deep carbonate reservoirs,and the prediction of main controlling factors and distribution of high-quality carbonate reservoirs.
基金Supported by the Research Project of CNOOC(KJZH-2021-0003-00).
文摘Based on petroleum exploration and new progress of oil and gas geology study in the Qiongdongnan Basin,combined with seismic,logging,drilling,core,sidewall coring,geochemistry data,a systematic study is conducted on the source,reservoir-cap conditions,trap types,migration and accumulation characteristics,enrichment mechanisms,and reservoir formation models of ultra-deep water and ultra-shallow natural gas,taking the Lingshui 36-1 gas field as an example.(1)The genetic types of the ultra-deep water and ultra-shallow natural gas in the Qiongdongnan Basin include thermogenic gas and biogenic gas,and dominated by thermogenic gas.(2)The reservoirs are mainly composed of the Quaternary deep-water submarine fan sandstone.(3)The types of cap rocks include deep-sea mudstone,mass transport deposits mudstone,and hydrate-bearing formations.(4)The types of traps are mainly lithological,and also include structural-lithological traps.(5)The migration channels include vertical transport channels such as faults,gas chimneys,fracture zones,and lateral transport layers such as large sand bodies and unconformity surfaces,forming a single or composite transport framework.A new natural gas accumulation model is proposed for ultra-deep water and ultra-shallow layers,that is,dual source hydrocarbon supply,gas chimney and submarine fan composite migration,deep-sea mudstone-mass transport deposits mudstone-hydrate-bearing strata ternary sealing,late dynamic accumulation,and large-scale enrichment at ridges.The new understanding obtained from the research has reference and enlightening significance for the next step of deepwater and ultra-shallow layers,as well as oil and gas exploration in related fields or regions.
基金Supported by the National Natural Science Foundation of China(U22B6002)PetroChina Science and Technology Project(2023ZZ14).
文摘Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment.
基金partly supported by the National Natural Science Foundation of China(52304045)the Open Fund(PLN2023-40)of the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)the Open Fund(2024-KFKT-08)of China National Petroleum Corporation Science and Technology Research Institute.
文摘In ultra-deep and large well sections,high collapse stresses and diminished annular return velocity present significant challenges to wellbore cleaning.With increasing depth,rising temperature and pressure constrain the regulation of displacement and drilling fluid rheology,impairing the fluid’s capacity to transport cuttings effectively.A precise understanding of cuttings settlement behavior and terminal velocity is therefore essential for optimizing their removal.This study accounts for variations in wellbore temperature and pressure,incorporates non-spherical cuttings and wellbore diameter parameters,and develops accordingly a simplified model to predict terminal settlement velocity.Thecuttings carrying ratio is introduced as a metric for evaluatingwellbore cleanliness.Findings reveal that temperature and pressure fluctuations can alter terminal velocity by up to 3.4%.Cuttings shape plays a crucial role,with block-shaped cuttings requiring higher annular return velocity than flake-shaped ones at the same carrying ratio.As wellbore size increases,the minimum required carrying flow rate rises nonlinearly,though the rate of increase gradually declines.For a Φ444.5mmwellbore,a carrying ratio of at least 0.6 is recommended.Terminal velocity decreases with increasing consistency coefficient,particularly in high-viscosity regimes.The proposed carrying ratio offers a more accurate and practical assessment of wellbore cleanliness.
基金Supported by the National Natural Science Foundation of ChinaCorporate Innovative Development Joint Fund(U19B6003)。
文摘Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.
基金Dao-Bing Wang was supported by the Beijing Natural Science Foundation Project(No.3222030)the National Natural Science Foundation of China(No.52274002)+1 种基金the PetroChina Science and Technology Innovation Foundation Project(No.2021DQ02-0201)Fu-Jian Zhou was supported by the National Natural Science Foundation of China(No.52174045).
文摘Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.
基金Supported by the Projects of National Natural Science Foundation of China(52288101,52174014,52374023)。
文摘The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness.
基金funded by projects of the National Natural Science Foundation of China(Nos.:42272167,U19B6003 and 41772153)projects of the Science&Technology Department of Sinopec(Nos.:P22121,P21058-8 and P23167).
文摘The Well Tashen 5(TS5),drilled and completed at a vertical depth of 9017 m in the Tabei Uplift of the Tarim Basin,NW China,is the deepest well in Asia.It has been producing both oil and gas from the Sinian at a depth of 8780e8840 m,also the deepest in Asia in terms of oil discovery.In this paper,the geochemical characteristics of Sinian oil and gas from the well were investigated and compared with those of Cambrian oil and gas discovered in the same basin.The oil samples,with Pr/Ph ratio of 0.78 and a whole oil carbon isotopic value of31.6‰,have geochemical characteristics similar to those of Ordovician oils from the No.1 fault in the North Shuntuoguole area(also named Shunbei area)and the Middle Cambrian oil from wells Zhongshen 1(ZS1)and Zhongshen 5(ZS5)of Tazhong Uplift.The maturity of light hydrocarbons,diamondoids and aromatic fractions all suggest an approximate maturity of 1.5%e1.7%Ro for the samples.The(4-+3-)methyldiamantane concentration of the samples is 113.5 mg/g,indicating intense cracking with a cracking degree of about 80%,which is consistent with the high bottom hole temperature(179℃).The Sinian gas samples are dry with a dryness coefficient of 0.97.The gas is a mixture of kerogen-cracking gas and oil-cracking gas and has Ro values ranging between 1.5%and 1.7%,and methane carbon isotopic values of41.6‰.Based on the equivalent vitrinite reflectance(R_(eqv)=1.51%e1.61%)and the thermal evolution of source rocks from the Cambrian Yu'ertusi Formation of the same well,it is proposed that the Sinian oil and gas be mainly sourced from the Cambrian Yu'ertusi Formation during the Himalayan period but probably also be joined by hydrocarbon of higher maturity that migrated from other source rocks in deeper formations.The discovery of Sinian oil and gas from Well TS5 suggests that the ancient ultra-deep strata in the northern Tarim Basin have the potential for finding volatile oil or condensate reservoirs.
基金Supported by National Key Research and Development Program of China(2017YFC0603101)National Natural Science Foundation of China(42225303,42372162,42102146)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010101)Basic and Forward-Looking Major Technology Project of China National Petroleum Corporation(2023ZZ0203)。
文摘Taking the Paleozoic of the Sichuan and Tarim basins in China as example,the controlling effects of the Earth system evolution and multi-spherical interactions on the formation and enrichment of marine ultra-deep petroleum in China have been elaborated.By discussing the development of“source-reservoir-seal”controlled by the breakup and assembly of supercontinents and regional tectonic movements,and the mechanisms of petroleum generation and accumulation controlled by temperature-pressure system and fault conduit system,Both the South China and Tarim blocks passed through the intertropical convergence zone(ITCZ)of the low-latitude Hadley Cell twice during their drifts,and formed hydrocarbon source rocks with high quality.It is proposed that deep tectonic activities and surface climate evolution jointly controlled the types and stratigraphic positions of ultra-deep hydrocarbon source rocks,reservoirs,and seals in the Sichuan and Tarim basins,forming multiple petroleum systems in the Ediacaran-Cambrian,Cambrian-Ordovician,Cambrian-Permian and Permian-Triassic strata.The matching degree of source-reservoir-seal,the type of organic matter in source rocks,the deep thermal regime of basin,and the burial-uplift process across tectonic periods collectively control the entire process from the generation to the accumulation of oil and gas.Three types of oil and gas enrichment models are formed,including near-source accumulation in platform marginal zones,distant-source accumulation in high-energy beaches through faults,and three-dimensional accumulation in strike-slip fault zones,which ultimately result in the multi-layered natural gas enrichment in ultra-deep layers of the Sichuan Basin and co-enrichment of oil and gas in the ultra-deep layers of the Tarim Basin.
基金financially supported by the National Natural Science Foundation of China(Nos.52120105007 and 52374062)the Innovation Fund Project for Graduate Students of China University of Petroleum(East China)supported by“the Fundamental Research Funds for the Central Universities”(23CX04047A)。
文摘A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.
基金Supported by the China National Petroleum Corporation(CNPC)Project(2023ZZ14-01)。
文摘Based on drilling and logging data,as well as geological experiments,the geological characteristics and factors controlling high-yield and enrichment of hydrocarbons in ultra-deep clastic rocks in the Linhe Depression,Hetao Basin,are studied.The results are obtained in four aspects.First,the inland saline lacustrine high-quality source rocks developed in the Paleogene in the Linhe Depression have the characteristics of early maturity,early expulsion,high hydrocarbon yield,and continuous and efficient hydrocarbon generation,providing an important resource basis for the formation of ultra-high pressure and high-yield reservoirs.Second,the weak compaction,early charging,and weak cementation for pore-preserving,together with the ultra-high pressure for pore-preserving and fracture expansion to improve the permeability,leads to the development of high-quality reservoirs with medium porosity(greater than 15%)and medium permeability(up to 226×10^(-3)μm^(2))in the ultra-deep strata(deeper than 6500 m),which represents a greatly expanded space for oil and gas exploration.Third,the Linhe Formation adjacent to the trough exhibits a low net-to-gross(NTG)and good reservoir-caprock assemblage,and it is overlaid by very thick high-quality mudstone caprock,which are conducive to the continuous and efficient hydrocarbon generation and pressurization and the formation of ultra-high pressure oil and gas reservoirs.Fourth,the most favorable targets for ultra-deep exploration are the zones adjacent to the hydrocarbon generating center of the Paleogene Linhe Formation and with good tectonic setting and structural traps,mainly including the Xinglong faulted structural zone and the Nalinhu faulted buried-hill zone.The significant breakthrough of ultra-deep oil and gas exploration in the Linhe Depression reveals the good potential of ultra-deep clastic rocks in this area,and provides valuable reference for oil and gas exploration of ultra-deep clastic rocks in other areas.
基金Supported by the China National Offshore Oil Corporation Project(KJGG2022--0302)。
文摘Based on the data from 3D seismic surveys,drilling,sidewall coring,thin sections,and tests,this paper analyzes Meso-Cenozoic geotectonic dynamics,buried-hill reservoir characteristics,and differential enrichment patterns of oil and gas in the buried hills,as well as case studies of typical reservoirs,to systematically discuss the conditions required for the formation of buried-hills and reservoirs and accumulations in the large oil and gas fields in deep to ultra-deep composite buried hills in the Bohai Sea..The key findings are as follows.First,deep to ultra-deep composite buried hills developed in the offshore Bohai Bay Basin primarily due to the double-episode destruction of the North China Craton in the Yanshanian and Himalayan.The Tanlu Fault's activity and the destruction of the North China Craton worked together to create the destruction center,which moved and converged episodically from the Bohai Bay Basin's margins towards the Bozhong Sag.This led to the formation of two development zones for composite buried hills and an orderly process of mountain-building within the offshore Bohai Bay Basin and subsequently two development zones for composite buried hills,i.e.the middle and inner rim zones within the Bozhong Depression.Second,under the coupling of favorable lithologies and multi-stage structures,the middle and inner rim zones are favorable for the formation of reservoirs in fluid dissolution-pore/fracture zones underlying the weathering crust.Third,Massive hydrocarbons were produced along the middle and inner rim zones during the Episode Ⅱ craton destruction,which caused overpressure.These hydrocarbons then moved to and accumulated in the composite buried hills.Excellent conditions for the accumulation of hydrocarbons are still present in the interior and lower portions of these buried hills.These results encourage a change in buried hill research to investigate composite buried hills in three dimensions.It should be noted that the multi-stage volcanic structures in the inner rim zone of the Sag and the deep to ultra-deep composite buried hill interiors in the middle rim zone are significant successor areas for further Bohai Sea exploration.
基金supported by the National Natural Science Foundation of China(No.U21B2062)。
文摘Fracture effectiveness plays a key role in gas productivity of ultra-deep tight sandstone reservoirs,Kuqa depression,Tarim Basin.Based on cores,thin sections,well logging,well testing and production data,the study evaluated fracture effectiveness and illustrated its impacts on gas productivity.High-angle and vertical shear fractures are the most important types.Distribution of effective fractures shows great heterogeneous.Fracture effectiveness is influenced by tectonism,diagenesis and in-situ stress.Earlier fractures or fractures in close to gypsum rock are easier to be filled.Completely filled fractures can be reopened under late tectonism.Dissolution improves local fracture effectiveness.Minerals spanning fracture surfaces protect fracture effectiveness from late compression.Fractures filled with calcite can be activated by acidification.Effective fractures parallel to maximum horizontal principal compressive stress direction show larger aperture.Overpressure can decrease the effective normal stress to maintain fracture effectiveness.With exploitation,decline in pore pressure reduces fracture effectiveness.Linear density,aperture,and strike of effective fractures influence gas productivity.Effective fractures greatly enhance matrix permeability.Therefore,more abundant and larger aperture fractures are always corresponded to higher productivity.However,effective fractures also facilitate late water invasion,especially,both mutually parallel.Intense water invasion leads to rapidly declines in productivity.
文摘Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.